论文标题

圆圈(II)的统计表征亚组:续部分

Statistically characterized subgroups of the circle (II): continued fractions

论文作者

Das, Pratulananda, Bose, Kumardipta

论文摘要

在本说明中,我们继续研究圆形组$ \ mathbb {t} $的新版本的特征亚组,即,最近在\ cite {ddb}中引入了“统计上表征的子组”(不久,“ s-characterized subgroups”)。我们主要研究这些子组的序列,是由于\ cite {l}和\ cite {kl}的持续分数表示$α$引起的序列(随后是\ cite \ cite {bdmw1}),比较了这些新的概念的主要结果,并表明这些子组在尺寸上的范围更大(如此之所以较大),而不是较大的尺寸(如此之所以较大)(这是如此)(这是如此)(这是如此)(这是如此)(这是如此)的(如此)(这是一个非常差异)(这是一个非常差异)(这是一个不合格的)(均具有较大的(以下)。 $ \ mathfrak {c} $并包含子组$ \langleα\ rangle $,并且在此过程中回答\ cite {ddb}中提出的打开问题6.4。

In this note, we continue the investigation of the new version of characterized subgroups of the circle group $\mathbb{T}$, namely, "statistically characterized subgroups" (shortly, "s-characterized subgroups") recently introduced in \cite{DDB}. We primarily investigate these subgroups for sequences arising out of continued fraction representation of irrational numbers $α$ in line of \cite{L} and \cite{KL} (followed by \cite{BDMW1}) comparing their main results for this new notion and show that these subgroups are strictly larger in size (so nontrivial) than the corresponding characterized subgroups, having cardinality $\mathfrak{c}$ and containing the subgroup $\langle α\rangle$ and in the process answer the Open Question 6.4 posed in \cite{DDB}.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源