论文标题
准异常知识:搜索具有嵌入式知识的新物理学
Quasi Anomalous Knowledge: Searching for new physics with embedded knowledge
论文作者
论文摘要
新现象的发现通常涉及专门寻找假设物理学的签名。最近,在没有信号之前,出现了新颖的深度学习技术用于异常检测。但是,通过忽略信号先验,这些方法的灵敏度大大降低。我们提出了一种称为准异常知识(QUAK)的新策略,在该策略中,我们介绍了替代信号先验,该先验捕获了新物理特征的某些显着特征,即使替代信号不正确,也可以恢复灵敏度。这种方法可以应用于广泛的物理模型和神经网络体系结构。在本文中,我们将Quak应用于CERN大型强子对撞机的新物理事件的异常检测,利用具有归一化流量的变异自动编码器。
Discoveries of new phenomena often involve a dedicated search for a hypothetical physics signature. Recently, novel deep learning techniques have emerged for anomaly detection in the absence of a signal prior. However, by ignoring signal priors, the sensitivity of these approaches is significantly reduced. We present a new strategy dubbed Quasi Anomalous Knowledge (QUAK), whereby we introduce alternative signal priors that capture some of the salient features of new physics signatures, allowing for the recovery of sensitivity even when the alternative signal is incorrect. This approach can be applied to a broad range of physics models and neural network architectures. In this paper, we apply QUAK to anomaly detection of new physics events at the CERN Large Hadron Collider utilizing variational autoencoders with normalizing flow.