论文标题

强大的预测

Robust Forecasting

论文作者

Christensen, Timothy, Moon, Hyungsik Roger, Schorfheide, Frank

论文摘要

当预报员无法区分一组合理的预测分布时,我们使用决策理论框架来研究预测离散结果的问题,这是由于部分识别或对模型错误指定或结构性断裂的担忧。我们得出“可靠”的预测,这些预测最大程度地减少了一系列预测分布的最大风险或后悔。我们表明,对于大量模型,包括用于动态离散选择的半参数图数据模型,可靠的预测以自然的方式取决于少量的凸优化问题,这些问题可以使用偶性方法来简化。最后,我们得出了“有效的鲁棒”预测,以解决首先要估计一组预测分布并开发合适的渐近效率理论的问题。通过替换具有有效第一阶段估计器的一组预测分布的滋扰参数获得的预测,可以严格由我们的有效鲁棒预测来控制。

We use a decision-theoretic framework to study the problem of forecasting discrete outcomes when the forecaster is unable to discriminate among a set of plausible forecast distributions because of partial identification or concerns about model misspecification or structural breaks. We derive "robust" forecasts which minimize maximum risk or regret over the set of forecast distributions. We show that for a large class of models including semiparametric panel data models for dynamic discrete choice, the robust forecasts depend in a natural way on a small number of convex optimization problems which can be simplified using duality methods. Finally, we derive "efficient robust" forecasts to deal with the problem of first having to estimate the set of forecast distributions and develop a suitable asymptotic efficiency theory. Forecasts obtained by replacing nuisance parameters that characterize the set of forecast distributions with efficient first-stage estimators can be strictly dominated by our efficient robust forecasts.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源