论文标题
$ f $ - 理想的密度和$ f $ - 理想的混合小度
Density of $f$-ideals and $f$-ideals in mixed small degrees
论文作者
论文摘要
如果其Stanley-Reisner和Facet Simplicial Complexs具有相同的$ f $ - vector,则无方形的单一理想称为$ f $ - 理想。我们表明,当变量数量为无穷大时,固定程度上产生的$ f $ - 理想的渐近密度为零。我们还提供了新颖的算法来构建以少量程度产生的$ f $ ideals。
A squarefree monomial ideal is called an $f$-ideal if its Stanley-Reisner and facet simplicial complexes have the same $f$-vector. We show that $f$-ideals generated in a fixed degree have asymptotic density zero when the number of variables goes to infinity. We also provide novel algorithms to construct $f$-ideals generated in small degrees.