论文标题

$ f $ - 理想的密度和$ f $ - 理想的混合小度

Density of $f$-ideals and $f$-ideals in mixed small degrees

论文作者

HÀ, Huy TÀi, Keiper, Graham, Mahmood, Hasan, O'Rourke, Jonathan L.

论文摘要

如果其Stanley-Reisner和Facet Simplicial Complexs具有相同的$ f $ - vector,则无方形的单一理想称为$ f $ - 理想。我们表明,当变量数量为无穷大时,固定程度上产生的$ f $ - 理想的渐近密度为零。我们还提供了新颖的算法来构建以少量程度产生的$ f $ ideals。

A squarefree monomial ideal is called an $f$-ideal if its Stanley-Reisner and facet simplicial complexes have the same $f$-vector. We show that $f$-ideals generated in a fixed degree have asymptotic density zero when the number of variables goes to infinity. We also provide novel algorithms to construct $f$-ideals generated in small degrees.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源