论文标题
拓扑光子学的微腔极化子
Microcavity polaritons for topological photonics
论文作者
论文摘要
微腔极性子是源于限制在半导体微腔内的激子和光子之间的强耦合而产生的。它们通常在可见或可见波长附近运行。它们结合了封闭电磁场的特性,包括较大的自旋轨道耦合,以及对外部磁场和粒子相互作用的敏感性。这些功能使Polaritons成为一个在一个和二维晶格中研究光子学拓扑阶段的绝佳平台,可以使用标准光学工具直接访问频段属性。在这篇综述中,我们描述了微腔极化子的主要特性以及拓扑光子学领域中的主要观察结果,其中包括在拓扑边缘状态下进行激光,在外部磁场下实施了极化的Chern绝缘子,以及直接测量基本量的基本量化量,例如量化量的量化量和量子,例如量化量的量化量和两位数。北极星相互作用为研究非线性拓扑阶段的研究开辟了令人兴奋的观点。
Microcavity polaritons are light-matter quasiparticles that arise from the strong coupling between excitons and photons confined in a semiconductor microcavity. They typically operate at visible or near visible wavelengths. They combine the properties of confined electromagnetic fields, including a sizeable spin-orbit coupling, and the sensitivity to external magnetic fields and particle interactions inherited from their partly matter nature. These features make polaritons an excellent platform to study topological phases in photonics in one and two dimensional lattices, which band properties can be directly accessed using standard optical tools. In this review we describe the main properties of microcavity polaritons and the main observations in the field of topological photonics, which include, among others, lasing in topological edge states, the implementation of a polariton Chern insulator under an external magnetic field and the direct measurement of fundamental quantities such as the quantum geometric tensor and winding numbers in one- and two-dimensional lattices. Polariton interactions open exciting perspectives for the study of nonlinear topological phases.