论文标题

坚硬球体流体运输特性的自由音量功率定律

Free Volume Power Law for Transport Properties of Hard Sphere Fluid

论文作者

Liu, Hongqin

论文摘要

本文介绍了一项研究,对密集的流体区域中硬球(HS)系统的传输性能与几何体积之间的关系。首先,根据Maiti等人的最新模拟结果,提出了一个通用的自由体积分布函数。 [1,2]将新的分布函数与局部粒子运输模型相结合,我们获得了HS传输属性的功率定律。然后,建立了无几何体积和热力学无体积之间的关系,这使得可以使用良好的状态方程(EOS)进行无几何体积的表达式。新的功率定律模型分别通过分子动力学(MD)模拟结果测试,分别用于HS粘度,扩散率和导热率,结果非常令人满意。使用幂定律,我们能够重现从不同方法获得的几个方程,例如熵缩放定律[3],模式耦合理论[4]或经验相关性[5]。特别是,关于众所周知的Cohen-Turnbull-Doolittle音量模型[6,7]的长期争议是通过使用与EOS结合的功率定律来解决的。

This paper presents a study on the relationship between transport properties and geometric free volume for hard sphere (HS) system in dense fluid region. Firstly, a generic free volume distribution function is proposed based on recent simulation results for the HS geometric free volume by Maiti et al. [1,2] Combining the new distribution function with a local particle transportation model, we obtain a power law for the HS transport properties. Then a relation between the geometric free volume and thermodynamic free volume is established, which makes it possible to use well-developed equations of state (EoS) for the expressions of the geometric free volume. The new power law models are tested with molecular dynamic (MD) simulation results for HS viscosity, diffusivity and thermal conductivity, respectively and the results are very satisfactory. Using the power law we are able to reproduce several equations obtained from different approaches, such as the entropy scaling laws [3], mode coupling theory [4] or empirical correlations [5]. In particular, A long-standing controversy regarding the well known Cohen-Turnbull-Doolittle free volume model [6,7] is resolved by using the power law combined with an EoS.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源