论文标题
一般各向异性理论中热化的全息方法
Holographic approach to thermalization in general anisotropic theories
论文作者
论文摘要
我们采用全息方法来研究淬灭的强耦合野外理论中的热化,包括非常通用的各向异性尺度,包括lifshitz和超标准违反固定点。全息偶是一种类似vaidya的时间依赖性几何形状,其中渐近度量具有一般各向异性缩放尺度的等法。我们找到了Ryu-Takanayagi极端表面,并使用它来计算带有宽度$ 2R $及其外部区域的带状区域之间的时间依赖性纠缠熵。在带有各向同性指标的特殊情况下,我们还探索了半径$ r $的球形区域的纠缠熵。纠缠熵的生长表征了淬火后的热率。我们在早期和较晚的$ r $和小$ r $ limits中研究热化过程。允许的缩放参数区域受到无效能量条件的限制以及Ryu-Takanayagi极端表面的存在的条件。这概括了先前的有关此主题的作品。所有获得的结果都可以与实验和其他探测热化方法进行比较。
We employ the holographic approach to study the thermalization in the quenched strongly-coupled field theories with very general anisotropic scalings including Lifshitz and hyperscaling violating fixed points. The holographic dual is a Vaidya-like time-dependent geometry where the asymptotic metric has general anisotropic scaling isometries. We find the Ryu-Takanayagi extremal surface and use it to calculate the time-dependent entanglement entropy between a strip region with width $2R$ and its outside region. In the special case with an isotropic metric, we also explore the entanglement entropy for a spherical region of radius $R$. The growth of the entanglement entropy characterizes the thermalization rate after a quench. We study the thermalization process in the early times and late times in both large $R$ and small $R$ limits. The allowed scaling parameter regions are constrained by the null energy conditions as well as the condition for the existence of the Ryu-Takanayagi extremal surfaces. This generalizes the previous works on this subject. All obtained results can be compared with experiments and other methods of probing thermalization.