论文标题
$ \ mathbb {r}^2 $中的古老有限熵流曲率流量
Ancient finite entropy flows by powers of curvature in $\mathbb{R}^2$
论文作者
论文摘要
我们通过嵌入在$ \ mathbb {r}^2 $有限的熵中的曲率力量表明了非动物古代流的存在。我们通过使用线性化运算符的不稳定本征函数来确定收缩器的线性化操作员的摩尔斯索引索引和内核。
We show the existence of non-homothetic ancient flows by powers of curvature embedded in $\mathbb{R}^2$ whose entropy is finite. We determine the Morse indices and kernels of the linearized operator of shrinkers to the flows and construct ancient flows by using unstable eigenfunctions of the linearized operator.