论文标题

飞行管理系统中轨迹预测的自适应应力测试

Adaptive Stress Testing of Trajectory Predictions in Flight Management Systems

论文作者

Moss, Robert J., Lee, Ritchie, Visser, Nicholas, Hochwarth, Joachim, Lopez, James G., Kochenderfer, Mykel J.

论文摘要

为了找到失败事件及其在飞行系统中的可能性,我们研究了称为自适应应力测试的先进黑盒应力测试方法的使用。我们分析了开发商业飞行管理系统中的轨迹预测变量,该预测因素将横向航路点和环境环境条件的输入收集。我们的目的是寻找与预测的横向轨迹相关的失败事件。这项工作的目的是发现可能的失败并将其报告给开发人员,以便他们可以在部署前解决并有可能解决系统的缺点。为了提高搜索性能,这项工作扩展了自适应应力测试公式,以更普遍地应用于顺序的决策问题,并通过在搜索过程中收集状态过渡并在模拟推出结束时进行评估。我们使用修改后的蒙特卡洛树搜索算法,并逐步扩大作为对手增强的学习者。将性能与直接的蒙特卡洛模拟和跨凝结法进行了比较,作为替代重要性采样基线。目的是找到传统基于需求的测试未发现的潜在问题。结果表明,我们的自适应压力测试方法发现了更多的失败,并且发现相对于基线方法,可能性较高。

To find failure events and their likelihoods in flight-critical systems, we investigate the use of an advanced black-box stress testing approach called adaptive stress testing. We analyze a trajectory predictor from a developmental commercial flight management system which takes as input a collection of lateral waypoints and en-route environmental conditions. Our aim is to search for failure events relating to inconsistencies in the predicted lateral trajectories. The intention of this work is to find likely failures and report them back to the developers so they can address and potentially resolve shortcomings of the system before deployment. To improve search performance, this work extends the adaptive stress testing formulation to be applied more generally to sequential decision-making problems with episodic reward by collecting the state transitions during the search and evaluating at the end of the simulated rollout. We use a modified Monte Carlo tree search algorithm with progressive widening as our adversarial reinforcement learner. The performance is compared to direct Monte Carlo simulations and to the cross-entropy method as an alternative importance sampling baseline. The goal is to find potential problems otherwise not found by traditional requirements-based testing. Results indicate that our adaptive stress testing approach finds more failures and finds failures with higher likelihood relative to the baseline approaches.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源