论文标题
一阶一般相对论的脱壳螺旋电流和潜力
Off-shell Noether currents and potentials for first-order general relativity
论文作者
论文摘要
我们报告说,违反壳的诺伊尔电流是从$ n $二维Palatini和Holst Lagrangians所描述的一阶一般相对论中获得的,包括宇宙学常数。通过使用相应的Lagrangian和由任意向量领域,本地$ SO(N)$(N)$ SO(N-1,1)$变换,“改进的差异性差异”和“或the Orthon northon the Connection the Orthonmant trance”的通用框架和连接。我们方法的一个了不起的方面是,我们以其直接形式使用Noether定理。通过构造,电流是偏外的,自然而然地导致了异性壳的定义。我们还研究了Palatini和Holst Lagrangians所谓的“半壳”案例。特别是,我们发现由此产生的差异性和本地$ SO(3,1)$或$ SO(4)$ off-shell noether电流和Holst Lagrangian的潜力,通常取决于Inmirzi参数,即使在“半出发壳”和Shell Case和Shell Case和Shell Case和Shell Case中也具有。我们还研究了“半脱壳”和壳体案件中的杀死向量场。当前的理论框架在静态球形对称性和弗里德曼(Friedmann)的“半脱壳”案例中进行了说明,弗里德曼(Lemaitre) - 罗伯逊 - 罗伯逊 - 步行者在四个维度上的空间。
We report off-shell Noether currents obtained from off-shell Noether potentials for first-order general relativity described by $n$-dimensional Palatini and Holst Lagrangians including the cosmological constant. These off-shell currents and potentials are achieved by using the corresponding Lagrangian and the off-shell Noether identities satisfied by diffeomorphisms generated by arbitrary vector fields, local $SO(n)$ or $SO(n-1,1)$ transformations, `improved diffeomorphisms', and the `generalization of local translations' of the orthonormal frame and the connection. A remarkable aspect of our approach is that we do {\it not} use Noether's theorem in its direct form. By construction, the currents are off-shell conserved and lead naturally to the definition of off-shell Noether charges. We also study what we call the `half off-shell' case for both Palatini and Holst Lagrangians. In particular, we find that the resulting diffeomorphism and local $SO(3,1)$ or $SO(4)$ off-shell Noether currents and potentials for the Holst Lagrangian generically depend on the Immirzi parameter, which holds even in the `half off-shell' and on-shell cases. We also study Killing vector fields in the `half off-shell' and on-shell cases. The current theoretical framework is illustrated for the `half off-shell' case in static spherically symmetric and Friedmann--Lemaitre--Robertson--Walker spacetimes in four dimensions.