论文标题
与有限深度近似离散的时间成本权衡问题
Approximating the discrete time-cost tradeoff problem with bounded depth
论文作者
论文摘要
我们重新审视了有限深度的特殊情况的离散时间成本权衡问题的截止日期版本。例如,在VLSI设计中发生这种情况。实例的深度是最长链中的作业数,并用$ d $表示。我们证明了近似值的新上限和下限。首先,我们观察到该问题可以被视为在$ d $ partite HyperGraph中找到最小重量顶点盖的特殊情况。接下来,我们研究自然LP放松,可以在多项式时间内解决固定的$ d $,并且对于时间成本的权衡实例,通常会达到任意小的错误。为了改善Lovász和Aharoni,Holzman和Krivelevich的先前工作,我们描述了一种确定性算法,其近似值略低于$ \ frac {d} {D} {2} {2} $,用于$ d $ d $ -d $ - 分机覆盖的$ d $ d $ d $ d $ $ d $ d $ d $ d $ d $ d $ d $ d $ d $ d $ dypartition。这很紧,也产生了一个$ \ frac {d} {2} $ - 一般时间成本权衡实例的近似算法。我们还研究了无Ximibibibibity的性能,并表明没有比$ \ frac {d+2} {4} $更好的近似值,假设唯一的游戏和$ \ text {p} \ neq \ neq \ neq \ text {np {np} $是可能的。这加强了斯文森的结果,斯文森(Svensson)表明,在相同的假设下,(无限深度)的一般时间成本权衡实例不存在恒定因素近似算法。以前,只有apx hardness以有界深度而闻名。
We revisit the deadline version of the discrete time-cost tradeoff problem for the special case of bounded depth. Such instances occur for example in VLSI design. The depth of an instance is the number of jobs in a longest chain and is denoted by $d$. We prove new upper and lower bounds on the approximability. First we observe that the problem can be regarded as a special case of finding a minimum-weight vertex cover in a $d$-partite hypergraph. Next, we study the natural LP relaxation, which can be solved in polynomial time for fixed $d$ and -- for time-cost tradeoff instances -- up to an arbitrarily small error in general. Improving on prior work of Lovász and of Aharoni, Holzman and Krivelevich, we describe a deterministic algorithm with approximation ratio slightly less than $\frac{d}{2}$ for minimum-weight vertex cover in $d$-partite hypergraphs for fixed $d$ and given $d$-partition. This is tight and yields also a $\frac{d}{2}$-approximation algorithm for general time-cost tradeoff instances. We also study the inapproximability and show that no better approximation ratio than $\frac{d+2}{4}$ is possible, assuming the Unique Games Conjecture and $\text{P}\neq\text{NP}$. This strengthens a result of Svensson, who showed that under the same assumptions no constant-factor approximation algorithm exists for general time-cost tradeoff instances (of unbounded depth). Previously, only APX-hardness was known for bounded depth.