论文标题
多样性意识到与论证搜索的相关性学习
Diversity Aware Relevance Learning for Argument Search
论文作者
论文摘要
在这项工作中,我们专注于检索有关涵盖各个方面的查询主张的相关论点的问题。最先进的方法依赖于索赔和房屋之间的明确映射,因此无需费力且昂贵的手动注释就无法利用大量可用的场所收集。他们的多样性方法依赖于通过聚类来删除重复项,这不能直接确保所选的前提涵盖所有方面。这项工作为参数检索问题引入了一种新的多步骤方法。我们的方法不是依靠地面真实分配,而是采用机器学习模型来捕获参数之间的语义关系。除此之外,它旨在涵盖查询的各个方面,而不是试图明确识别重复。我们的经验评估表明,即使需要更少的数据,我们的方法也会导致参数检索任务的显着改善。
In this work, we focus on the problem of retrieving relevant arguments for a query claim covering diverse aspects. State-of-the-art methods rely on explicit mappings between claims and premises, and thus are unable to utilize large available collections of premises without laborious and costly manual annotation. Their diversity approach relies on removing duplicates via clustering which does not directly ensure that the selected premises cover all aspects. This work introduces a new multi-step approach for the argument retrieval problem. Rather than relying on ground-truth assignments, our approach employs a machine learning model to capture semantic relationships between arguments. Beyond that, it aims to cover diverse facets of the query, instead of trying to identify duplicates explicitly. Our empirical evaluation demonstrates that our approach leads to a significant improvement in the argument retrieval task even though it requires less data.