论文标题

定价驱动的服务缓存和移动边缘计算中的任务卸载

Pricing-Driven Service Caching and Task Offloading in Mobile Edge Computing

论文作者

Yan, Jia, Bi, Suzhi, Duan, Lingjie, Zhang, Ying-Jun Angela

论文摘要

提供了移动边缘计算(MEC)服务,无线设备(WDS)不再需要在本地运行所需的程序时经历较长的延迟,而是可以付费以将计算任务卸载到Edge服务器。鉴于其有限的存储空间,对于基站的边缘服务器(BS)来说,通过会议和指导WDS的卸载决策来确定哪些服务程序来确定哪些服务程序很重要。在本文中,我们提出了一个MEC服务定价方案,以与服务缓存决策协调并控制WDS的任务卸载行为。我们提出了一个不完整的信息的两阶段动态游戏,以建模和分析BS和多个相关WD之间的两阶段交互。具体而言,在第一阶段,BS确定了MEC服务缓存,并宣布服务计划价格向WDS宣布,目的是在存储和计算资源限制下最大化其预期利润。在第二阶段,鉴于不同的服务计划的价格,每个WD都自私地决定其卸载决定,以最大程度地减少个人服务延迟和成本,而不知道其他WDS所需的程序类型或本地执行延迟。尽管缺乏WD的信息以及所有WDS的卸载决策的耦合,但我们得出了基于最佳阈值的最佳卸载策略,WDS在贝叶斯平衡的II阶段中很容易采用。然后,通过预测WDS的卸载均衡,我们通过低复杂算法在I期中共同优化BS的定价和服务缓存。特别是,我们研究了统一和分化的定价方案。对于差异化的定价,我们证明应向同一工作量的缓存计划收取相同的价格。

Provided with mobile edge computing (MEC) services, wireless devices (WDs) no longer have to experience long latency in running their desired programs locally, but can pay to offload computation tasks to the edge server. Given its limited storage space, it is important for the edge server at the base station (BS) to determine which service programs to cache by meeting and guiding WDs' offloading decisions. In this paper, we propose an MEC service pricing scheme to coordinate with the service caching decisions and control WDs' task offloading behavior. We propose a two-stage dynamic game of incomplete information to model and analyze the two-stage interaction between the BS and multiple associated WDs. Specifically, in Stage I, the BS determines the MEC service caching and announces the service program prices to the WDs, with the objective to maximize its expected profit under both storage and computation resource constraints. In Stage II, given the prices of different service programs, each WD selfishly decides its offloading decision to minimize individual service delay and cost, without knowing the other WDs' desired program types or local execution delays. Despite the lack of WD's information and the coupling of all the WDs' offloading decisions, we derive the optimal threshold-based offloading policy that can be easily adopted by the WDs in Stage II at the Bayesian equilibrium. Then, by predicting the WDs' offloading equilibrium, we jointly optimize the BS' pricing and service caching in Stage I via a low-complexity algorithm. In particular, we study both the uniform and differentiated pricing schemes. For differentiated pricing, we prove that the same price should be charged to the cached programs of the same workload.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源