论文标题

科莫:代谢建模和药物发现中多摩斯数据集成的管道

COMO: A Pipeline for Multi-Omics Data Integration in Metabolic Modeling and Drug Discovery

论文作者

Bessell, Brandt, Loecker, Josh, Zhao, Zhongyuan, Aghamiri, Sara Sadat, Mohanty, Sabyasachi, Amin, Rada, Helikar, Tomáš, Puniya, Bhanwar Lal

论文摘要

使用代谢建模确定潜在的药物靶标需要整合多种建模方法和异质生物数据集,而无需复杂的工具,这可能具有挑战性。我们开发了COMO,这是一种用户友好的管道,该管道整合了多摩学数据处理,上下文特定的代谢模型开发,模拟,药物数据库和疾病数据以帮助药物发现。 COMO可以作为Docker映像安装,并在Jupyter Lab环境中包含直观的说明。它为批量和单细胞RNA-seq,微阵列和蛋白质组学的多组学整合提供了全面的解决方案,以开发上下文特异性的代谢模型。 Como使用公共数据库,用于模型构建的开源解决方案以及一种简化的方法来预测可再利用的药物,使研究人员能够研究低成本替代方案和新型疾病治疗方法。作为一个案例研究,我们使用管道来构建B细胞的代谢模型,该模拟和分析它们分别预测了25和23种代谢药物靶标的类风湿关节炎和全身性红斑狼疮。 COMO可用于为任何细胞或组织类型构建模型,并确定任何人类疾病的药物。该管道有可能通过在临床前和临床研究中提供高信心的目标来提高全球社区的健康状况。

Identifying potential drug targets using metabolic modeling requires integrating multiple modeling methods and heterogenous biological datasets, which can be challenging without sophisticated tools. We developed COMO, a user-friendly pipeline that integrates multi-omics data processing, context-specific metabolic model development, simulations, drug databases, and disease data to aid drug discovery. COMO can be installed as a Docker image and includes intuitive instructions within a Jupyter Lab environment. It provides a comprehensive solution for multi-omics integration of bulk and single-cell RNA-seq, microarrays, and proteomics to develop context-specific metabolic models. Using public databases, open-source solutions for model construction, and a streamlined approach for predicting repurposable drugs, COMO empowers researchers to investigate low-cost alternatives and novel disease treatments. As a case study, we used the pipeline to construct metabolic models of B cells, which simulate and analyze them to predict 25 and 23 metabolic drug targets for rheumatoid arthritis and systemic lupus erythematosus, respectively. COMO can be used to construct models for any cell or tissue type and identify drugs for any human disease. The pipeline has the potential to improve the health of the global community cost-effectively by providing high-confidence targets to pursue in preclinical and clinical studies.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源