论文标题
4D F(4)测量$ \ Mathcal {f} $的超级重力和黑洞
4d F(4) gauged supergravity and black holes of class $\mathcal{F}$
论文作者
论文摘要
我们在紧凑型Riemann Surface上执行6D Matter-Conoppled f(4)超级效果,$ \ Mathfrak {g} $属于$ \ Mathfrak {G} $,在骨气动作的水平上。结果是$ \ Mathcal {n} = 2 $测量的超级重力耦合到两个矢量多重组和一个单个hypermultiplet。四维模型在$ \ mathcal {f} $的3D超符号字段理论上是双重双重的,它描述了包裹在$σ_\ mathfrak {g} $上的大型IIA和IIB中的不同Brane系统。幼稚的还原导致与电气和磁性轨道磁场以及大量张量的非标准4D混合双重性框架,只能在嵌入张张量形式主义中进行描述。在一系列电磁二元性链中,我们能够确定标准级别的标量歧管和电量测量值,这些标量歧管和电量表在标准超级框架中独特地指定了该模型。然后,我们使用结果来构建ADS $ _6 $中静态旋转黑洞的第一个示例,并通过5D拓扑扭曲的索引对其熵进行微观计数。最后,我们展示了4D理论的无质量部门的进一步亚构造,例如Fayet-iliopoulos衡量了$ T^3 $模型和最小的测量超级型号。反过来,我们能够找到新的渐近广告$ _4 $解决方案,为挤压的$ s^3 $分区功能提供预测,以及类$ \ Mathcal {f} $理论的超符合和精制的扭曲指标。
We perform a consistent reduction of 6d matter-coupled F(4) supergravity on a compact Riemann surface $Σ_\mathfrak{g}$ of genus $\mathfrak{g}$, at the level of the bosonic action. The result is an $\mathcal{N}=2$ gauged supergravity coupled to two vector multiplets and a single hypermultiplet. The four-dimensional model is holographically dual to the 3d superconformal field theories of class $\mathcal{F}$, describing different brane systems in massive type IIA and IIB wrapped on $Σ_\mathfrak{g}$. The naive reduction leads to a non-standard 4d mixed duality frame with both electric and magnetic gauge fields, as well as a massive tensor, that can be only described in the embedding tensor formalism. Upon a chain of electromagnetic dualities, we are able to determine the scalar manifolds and electric gaugings that uniquely specify the model in the standard supergravity frame. We then use the result to construct the first examples of static dyonic black holes in AdS$_6$ and perform a microscopic counting of their entropy via the 5d topologically twisted index. Finally, we show the existence of further subtruncations to the massless sector of the 4d theory, such as the Fayet-Iliopoulos gauged $T^3$ model and minimal gauged supergravity. We are in turn able to find new asymptotically AdS$_4$ solutions, providing predictions for the squashed $S^3$ partition functions and the superconformal and refined twisted indices of class $\mathcal{F}$ theories.