论文标题

世俗系数和全态乘法混乱

Secular Coefficients and the Holomorphic Multiplicative Chaos

论文作者

Najnudel, Joseph, Paquette, Elliot, Simm, Nick

论文摘要

我们研究$ n \ times n $随机统一矩阵的世俗系数$ u_ {n} $从圆形$β$ - 填充中得出,这些系数定义为特征性polyenomial $ \ det(1- zu__ {n} n}^}^}^}^}^}^}^}^{fectemistion protantical polyenomial $ \ det(z^n \} $)的系数。当$β> 4 $时,当$ n $和$ n $同时无限时,我们会获得新的限制分布。我们通过证明$β= 2 $的diaconis和gamburd解决了一个空旷的问题,中间系数倾向于为$ n \ to \ infty $。我们展示了高斯乘法混乱(GMC)的理论如何在这些问题以及对获得的限制分布的明确描述中起着重要作用。我们将Diaconis和Gamburd的非凡魔术方形公式扩展到了世俗系数的矩,并将所有$β> 0 $扩展到所有$β> 0 $,并分析矩的渐近行为。我们获得了所有$β> 0的世俗系数数量级的估计值,当$β\ geq 2 $时,这些估计值很清晰。这些见解促使我们引入了一种与世俗系数相关的新随机对象,我们称之为全态乘法混乱(HMC)。将HMC视为随机分布,我们证明了其在适当的Sobolev空间中的规律性的鲜明结果。我们的证明揭示并利用了与其他领域的几个新型联系,包括随机排列,陶伯利亚定理和组合学。

We study the secular coefficients of $N \times N$ random unitary matrices $U_{N}$ drawn from the Circular $β$-Ensemble, which are defined as the coefficients of $\{z^n\}$ in the characteristic polynomial $\det(1-zU_{N}^{*})$. When $β> 4$ we obtain a new class of limiting distributions that arise when both $n$ and $N$ tend to infinity simultaneously. We solve an open problem of Diaconis and Gamburd by showing that for $β=2$, the middle coefficient tends to zero as $N \to \infty$. We show how the theory of Gaussian multiplicative chaos (GMC) plays a prominent role in these problems and in the explicit description of the obtained limiting distributions. We extend the remarkable magic square formula of Diaconis and Gamburd for the moments of secular coefficients to all $β>0$ and analyse the asymptotic behaviour of the moments. We obtain estimates on the order of magnitude of the secular coefficients for all $β> 0,$ and these estimates are sharp when $β\geq 2$. These insights motivated us to introduce a new stochastic object associated with the secular coefficients, which we call Holomorphic Multiplicative Chaos (HMC). Viewing the HMC as a random distribution, we prove a sharp result about its regularity in an appropriate Sobolev space. Our proofs expose and exploit several novel connections with other areas, including random permutations, Tauberian theorems and combinatorics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源