论文标题

图形的无环多项式

Acyclic polynomials of graphs

论文作者

Barton, Caroline, Brown, Jason I., Pike, David A.

论文摘要

对于每个非负整数$ i $,令$ a_i $是$ i $ -subsets $ v(g)$的$ i $ subsets的数量,它会诱导给定图形$ g $的无环子图。我们定义$ a(g,x)= \ sum_ {i \ geq 0} a_i x^i $($ a_i $的生成函数)是$ g $的无循环多项式。在介绍了这些多项式的某些特性之后,我们研究了其根的性质和位置。

For each nonnegative integer $i$, let $a_i$ be the number of $i$-subsets of $V(G)$ that induce an acyclic subgraph of a given graph $G$. We define $A(G,x) = \sum_{i \geq 0} a_i x^i$ (the generating function for $a_i$) to be the acyclic polynomial for $G$. After presenting some properties of these polynomials, we investigate the nature and location of their roots.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源