论文标题

子词细分和单桥语言影响零拍神经机器翻译

Subword Segmentation and a Single Bridge Language Affect Zero-Shot Neural Machine Translation

论文作者

Rios, Annette, Müller, Mathias, Sennrich, Rico

论文摘要

零拍神器翻译是一个有吸引力的目标,因为获得数据和建立新翻译说明的转换系统的成本很高。但是,以前的论文报告了零击翻译中的成功率混合。很难预测它将有效的设置,以及与完全监督的系统相比,哪些限制性能。在本文中,我们研究了在WMT数据上训练的多语言EN $ \ leftrightArrow $ {FR,CS,DE,FI}系统的零射击性能。我们发现,零射击性能是高度不稳定的,并且在训练跑之间可能会因6个以上的BLEU而异,从而难以可靠地跟踪改进。我们观察到以零拍的方式复制来源的偏见,并研究子词分割的选择如何影响这种偏见。我们发现,特定于语言的子词细分会导致训练时的子字复制较少,并且与训练有素的分段相比,零击性能更好。多语言模型的最新趋势是不训练所有语言对之间的并行数据,而是具有单一的桥式语言,例如英语。我们发现,这对零射击的翻译产生负面影响,并导致失败模式,该模型忽略了语言标签,而是以零拍的方式产生英语输出。我们表明,在某些非英语对中,即使有少量的平行数据,对英语的这种偏见也可以有效地降低。

Zero-shot neural machine translation is an attractive goal because of the high cost of obtaining data and building translation systems for new translation directions. However, previous papers have reported mixed success in zero-shot translation. It is hard to predict in which settings it will be effective, and what limits performance compared to a fully supervised system. In this paper, we investigate zero-shot performance of a multilingual EN$\leftrightarrow${FR,CS,DE,FI} system trained on WMT data. We find that zero-shot performance is highly unstable and can vary by more than 6 BLEU between training runs, making it difficult to reliably track improvements. We observe a bias towards copying the source in zero-shot translation, and investigate how the choice of subword segmentation affects this bias. We find that language-specific subword segmentation results in less subword copying at training time, and leads to better zero-shot performance compared to jointly trained segmentation. A recent trend in multilingual models is to not train on parallel data between all language pairs, but have a single bridge language, e.g. English. We find that this negatively affects zero-shot translation and leads to a failure mode where the model ignores the language tag and instead produces English output in zero-shot directions. We show that this bias towards English can be effectively reduced with even a small amount of parallel data in some of the non-English pairs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源