论文标题

秘书与一般到达的匹配

Secretary Matching with General Arrivals

论文作者

Ezra, Tomer, Feldman, Michal, Gravin, Nick, Tang, Zhihao Gavin

论文摘要

我们为在一般加权图中的秘书匹配,在顶点和边缘到达的模型下为秘书匹配提供在线算法。在这两种模型中,边缘都与一开始未知的任意权重相关联,并且在线揭示。在顶点到达下,顶点以统一的随机顺序在线到达;顶点$ v $到达后,揭示了从$ v $到所有先前到达的顶点的边缘的权重,并且算法决定在匹配中包含哪些边缘(如果有的话)。在边缘到达的情况下,边缘以统一的随机顺序在线到达;边缘$ e $到达后,其重量被揭示,并且该算法决定是否将其包括在匹配中。我们为顶点到达提供了$ 5/12 $竞争的算法,并证明它很紧。对于Edge到达,我们提供$ 1/4 $竞争的算法。两种结果都在相应设置的最新界限上有所改善。有趣的是,对于顶点到达,一般图中的秘书匹配优于秘书秘书,在两部分到达的两部分图中匹配,其中$ 1/e $是最好的保证。

We provide online algorithms for secretary matching in general weighted graphs, under the well-studied models of vertex and edge arrivals. In both models, edges are associated with arbitrary weights that are unknown from the outset, and are revealed online. Under vertex arrival, vertices arrive online in a uniformly random order; upon the arrival of a vertex $v$, the weights of edges from $v$ to all previously arriving vertices are revealed, and the algorithm decides which of these edges, if any, to include in the matching. Under edge arrival, edges arrive online in a uniformly random order; upon the arrival of an edge $e$, its weight is revealed, and the algorithm decides whether to include it in the matching or not. We provide a $5/12$-competitive algorithm for vertex arrival, and show it is tight. For edge arrival, we provide a $1/4$-competitive algorithm. Both results improve upon state of the art bounds for the corresponding settings. Interestingly, for vertex arrival, secretary matching in general graphs outperforms secretary matching in bipartite graphs with 1-sided arrival, where $1/e$ is the best possible guarantee.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源