论文标题

Vega:朝向端到端可配置的汽车管道

VEGA: Towards an End-to-End Configurable AutoML Pipeline

论文作者

Wang, Bochao, Xu, Hang, Zhang, Jiajin, Chen, Chen, Fang, Xiaozhi, Xu, Yixing, Kang, Ning, Hong, Lanqing, Jiang, Chenhan, Cai, Xinyue, Li, Jiawei, Zhou, Fengwei, Li, Yong, Liu, Zhicheng, Chen, Xinghao, Han, Kai, Shu, Han, Song, Dehua, Wang, Yunhe, Zhang, Wei, Xu, Chunjing, Li, Zhenguo, Liu, Wenzhi, Zhang, Tong

论文摘要

自动化机器学习(AUTOML)是用于自动发现和部署机器学习模型的重要工业解决方案。但是,设计一个集成的汽车系统面临可配置性,可伸缩性,集成性和平台多样性的四个巨大挑战。在这项工作中,我们提出了Vega,这是一个高效且全面的汽车框架,可兼容并针对多个硬件平台进行了优化。 a)VEGA管道集成了各种汽车模块,包括神经体系结构搜索(NAS),超参数优化(HPO),自动数据增强,模型压缩和完全训练。 b)为了支持各种搜索算法和任务,我们设计了一种新颖的细粒搜索空间及其描述语言,以便于适应不同的搜索算法和任务。 c)我们将深度学习框架的常见组成部分抽象成统一的界面。 Vega可以通过多个后端和硬件执行。关于多个任务的广泛基准实验表明,VEGA可以改善现有的汽车算法,并发现针对SOTA方法的新的高性能模型,例如搜索的DNET模型动物园的上升速度比EfficityNet-B5快于10倍,并且比ImageNet上的Regnetx-32GF快9.2倍。 Vega在https://github.com/huawei-noah/vega上开源。

Automated Machine Learning (AutoML) is an important industrial solution for automatic discovery and deployment of the machine learning models. However, designing an integrated AutoML system faces four great challenges of configurability, scalability, integrability, and platform diversity. In this work, we present VEGA, an efficient and comprehensive AutoML framework that is compatible and optimized for multiple hardware platforms. a) The VEGA pipeline integrates various modules of AutoML, including Neural Architecture Search (NAS), Hyperparameter Optimization (HPO), Auto Data Augmentation, Model Compression, and Fully Train. b) To support a variety of search algorithms and tasks, we design a novel fine-grained search space and its description language to enable easy adaptation to different search algorithms and tasks. c) We abstract the common components of deep learning frameworks into a unified interface. VEGA can be executed with multiple back-ends and hardwares. Extensive benchmark experiments on multiple tasks demonstrate that VEGA can improve the existing AutoML algorithms and discover new high-performance models against SOTA methods, e.g. the searched DNet model zoo for Ascend 10x faster than EfficientNet-B5 and 9.2x faster than RegNetX-32GF on ImageNet. VEGA is open-sourced at https://github.com/huawei-noah/vega.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源