论文标题
使用可变空间扩散的不确定性集合数据可视化和探索
Uncertainty-Oriented Ensemble Data Visualization and Exploration using Variable Spatial Spreading
论文作者
论文摘要
作为处理数值模拟中潜在不确定性的重要方法,集合模拟已被广泛应用于许多学科。可视化是一种有前途且强大的合奏仿真分析方法。但是,常规可视化方法主要旨在基于领域专业知识的数据简化,并突出显示重要信息,而不是提供灵活的数据探索和干预机制。必须通过这种方法反复进行试验程序。为了解决此问题,我们提出了使用属性变量维度作为主要分析维度的整体数据分析的新观点。特别是,我们提出了一种基于可变空间扩散的可变不确定性计算方法。基于此方法,我们设计了一个交互式集成分析框架,该框架为整体数据提供了灵活的交互式探索。尤其是,提出的扩展曲线视图,区域稳定性热图视图和时间分析视图,以及常用的2D图视图,共同支持不确定性分布感知,区域选择和时间分析以及其他分析要求。我们通过分析现实世界集合模拟数据集来验证我们的方法。从领域专家那里收集的反馈证实了我们框架的功效。
As an important method of handling potential uncertainties in numerical simulations, ensemble simulation has been widely applied in many disciplines. Visualization is a promising and powerful ensemble simulation analysis method. However, conventional visualization methods mainly aim at data simplification and highlighting important information based on domain expertise instead of providing a flexible data exploration and intervention mechanism. Trial-and-error procedures have to be repeatedly conducted by such approaches. To resolve this issue, we propose a new perspective of ensemble data analysis using the attribute variable dimension as the primary analysis dimension. Particularly, we propose a variable uncertainty calculation method based on variable spatial spreading. Based on this method, we design an interactive ensemble analysis framework that provides a flexible interactive exploration of the ensemble data. Particularly, the proposed spreading curve view, the region stability heat map view, and the temporal analysis view, together with the commonly used 2D map view, jointly support uncertainty distribution perception, region selection, and temporal analysis, as well as other analysis requirements. We verify our approach by analyzing a real-world ensemble simulation dataset. Feedback collected from domain experts confirms the efficacy of our framework.