论文标题
通过单层六角硼在氮化硼中的谐振耦合通过谐振耦合的深度次波热开关
Deep subwavelength thermal switch via resonant coupling in monolayer hexagonal boron nitride
论文作者
论文摘要
与即使在深纳米级设备中也可以在相同材料中广泛调节的电导不同,调整单个材料系统或纳米结构中的导热电导率极具挑战性,需要大规模设备。这禁止在切换热电流流动时实现强大的ON/OFF状态。在这里,我们介绍了基于三个光子谐振器的谐振耦合的热开关的理论,类似于场效应的电子晶体管,该电子晶体管由源,门和排水组成。作为材料平台,我们利用在受控菌株下单层六边形硝酸硼(HBN)的介电函数中观察到的极端可调性和低损耗的共振。我们从第一原理中得出了HBN的介电函数,包括通过考虑使用声子同位素和Anharmonic Phonon-Phonon散射计算的Polyon-Polariton线宽。随后,我们提出了一个基于应变的HBN的热开关,该热开关在深层的亚波长纳米结构中调节导热电导的数量级不仅超过一个数量级,对应于98%的ON/OFF对比度。
Unlike the electrical conductance that can be widely modulated within the same material even in deep nanoscale devices, tuning the thermal conductance within a single material system or nanostructure is extremely challenging and requires a large-scale device. This prohibits the realization of robust ON/OFF states in switching the flow of thermal currents. Here, we present the theory of a thermal switch based on resonant coupling of three photonic resonators, in analogy to the field-effect electronic transistor composed of a source, gate, and drain. As a material platform, we capitalize on the extreme tunability and low-loss resonances observed in the dielectric function of monolayer hexagonal boron nitride (hBN) under controlled strain. We derive the dielectric function of hBN from first principles, including the phonon-polariton linewidths computed by considering phonon isotope and anharmonic phonon-phonon scattering. Subsequently, we propose a strain-controlled hBN-based thermal switch that modulates thermal conductance by more than an order of magnitude, corresponding to an ON/OFF contrast ratio of 98%, in a deep subwavelength nanostructure.