论文标题
全组的换向子亚组的比较和简单性
Comparison and Simplicity of Commutator Subgroups of Full Groups
论文作者
论文摘要
我们表明,对于最小的,第二个可计数,局部紧凑的hausdorffétalegroupoid,其单位空间与cantor套件同构,如果群体固醇具有比较,则其完整组的换向器子组很简单。这概括了Bezuglyi和Medynets的最小系统的结果,并为Matui的拓扑完整组提供了补充。
We show that for a minimal, second countable, locally compact Hausdorff étale groupoid whose unit space is homeomorphic to the Cantor set, if the groupoid has comparison then the commutator subgroup of its full group is simple. This generalizes a result of Bezuglyi and Medynets for Cantor minimal systems and complements Matui's results for topological full groups.