论文标题
电路QED中的静态性
Stoquasticity in circuit QED
论文作者
论文摘要
我们分析了电路Qed的汉密尔顿人是否在耦合通量量子系统的系统上进行混乱:我们表明,通常可以针对此类系统执行可扩展的符号空间蒙特卡洛模拟。尽管如此,我们证实了最近的发现[Arxiv:1903.06139],即有效的,非拼写的Qubit Hamiltonian可以在一个电容性耦合通量量子的系统中出现。我们发现,如果电容耦合足够小,那么如果我们在投影到有效的Qubit Hamiltonian之前进行规范变换,则可以避免有效的Qubit Hamiltonian的这种不隔离性。我们的结果阐明了电路Qed的哈密顿量用于使用量子绝热计算的力量,以及找到解决这些系统中符号问题的表示形式的微妙之处
We analyze whether circuit-QED Hamiltonians are stoquastic focusing on systems of coupled flux qubits: we show that scalable sign-problem free path integral Monte Carlo simulations can typically be performed for such systems. Despite this, we corroborate the recent finding [arXiv:1903.06139] that an effective, non-stoquastic qubit Hamiltonian can emerge in a system of capacitively coupled flux qubits. We find that if the capacitive coupling is sufficiently small, this non-stoquasticity of the effective qubit Hamiltonian can be avoided if we perform a canonical transformation prior to projecting onto an effective qubit Hamiltonian. Our results shed light on the power of circuit-QED Hamiltonians for the use of quantum adiabatic computation and the subtlety of finding a representation which cures the sign problem in these systems