论文标题
旋转轨道耦合淋巴结超导体中磁性电导率振荡的固有机制
Intrinsic Mechanism for Magneto-Thermal Conductivity Oscillations in Spin-Orbit-Coupled Nodal Superconductors
论文作者
论文摘要
我们描述了一种机制,该机制在平面磁场中测量的纵向热导率$κ_{xx} $,在分层节点超导体中的磁角振荡。当节点处的自旋轨道分裂大于节点散射率时,就会发生这些振荡,并且与先前确定的涡旋诱导的振荡互补。在足够的各向异性材料中,自旋轨道机制可能是主导的。作为一个特定的应用程序,我们专注于高温超导体YBA $ _2 $ cu $ _3 $ o $ $ _ {6+x} $。该材料属于Rashba双层类别的类别,其中单个CUO $ _2 $层缺乏反转对称性,尽管晶体本身是全球中心对称的。我们表明,自旋轨道耦合赋予$κ_{xx}/t $具有特征性地依赖于磁场角,应在实验中轻松检测到,并认为对于不足的样品,自旋轨道贡献大于涡旋贡献。磁性电导率的一个关键优势是它是旋转轨道物理学的大量探针,因此对表面上的反转破裂不敏感。
We describe a mechanism by which the longitudinal thermal conductivity $κ_{xx}$, measured in an in-plane magnetic field, oscillates as a function of field angle in layered nodal superconductors. These oscillations occur when the spin-orbit splitting at the nodes is larger than the nodal scattering rate, and are complementary to vortex-induced oscillations identified previously. In sufficiently anisotropic materials, the spin-orbit mechanism may be dominant. As a particular application, we focus on the cuprate high-temperature superconductor YBa$_2$Cu$_3$O$_{6+x}$. This material belongs to the class of Rashba bilayers, in which individual CuO$_2$ layers lack inversion symmetry although the crystal itself is globally centrosymmetric. We show that spin-orbit coupling endows $κ_{xx}/T$ with a characteristic dependence on magnetic field angle that should be easily detected experimentally, and argue that for underdoped samples the spin-orbit contribution is larger than the vortex contribution. A key advantage of the magneto-thermal conductivity is that it is a bulk probe of spin-orbit physics, and therefore not sensitive to inversion breaking at surfaces.