论文标题

RRSCELL方法用于多重免疫荧光癌组织的自动单细胞分析

RRScell method for automated single-cell profiling of multiplexed immunofluorescence cancer tissue

论文作者

Li, Alvason Zhenhua, Eichholz, Karsten, Sholukh, Anton, Stone, Daniel, Loprieno, Michelle A., Jerome, Keith R., Phasouk, Khamsone, Diem, Kurt, Zhu, Jia, Corey, Lawrence

论文摘要

多路复用的免疫荧光组织成像,允许同时检测细胞的分子特性,是表征转化研究和临床实践中复杂细胞机制的重要工具。需要新的图像分析方法,因为用蛋白质,DNA和RNA生物标志物的混合物染色的组织截面引入了各种复杂性,包括由于触摸或重叠细胞之间的荧光染色伪像引起的伪边缘。我们已经开发了RRSCELL方法,利用随机随机反应种子(RRS)算法和深神经学习U-NET来提取基因表达的单细胞分辨率分析图在一百万个细胞组织片段上的单细胞分辨率分析图。此外,通过使用流形学习技术进行细胞表型群集分析,AI驱动的RRSCELL配备了基于标记的图像细胞仪分析工具(MarkeruMAP)来量化与生物标志物混合物的组织图像的细胞表型的空间分布。在这项研究中获得的结果表明,RRSCELL提供了一种足够的方法来提取各种组织类型中的细胞量单细胞形态以及生物标志物含量,而建立标记工具则可以确保降低维度的效率,从而使其成为高维组织图像的空间分析中的一般工具。

Multiplexed immuno-fluorescence tissue imaging, allowing simultaneous detection of molecular properties of cells, is an essential tool for characterizing the complex cellular mechanisms in translational research and clinical practice. New image analysis approaches are needed because tissue section stained with a mixture of protein, DNA and RNA biomarkers are introducing various complexities, including spurious edges due to fluorescent staining artifacts between touching or overlapping cells. We have developed the RRScell method harnessing the stochastic random-reaction-seed (RRS) algorithm and deep neural learning U-net to extract single-cell resolution profiling-map of gene expression over a million cells tissue section accurately and automatically. Furthermore, with the use of manifold learning technique UMAP for cell phenotype cluster analysis, the AI-driven RRScell has equipped with a marker-based image cytometry analysis tool (markerUMAP) in quantifying spatial distribution of cell phenotypes from tissue images with a mixture of biomarkers. The results achieved in this study suggest that RRScell provides a robust enough way for extracting cytometric single cell morphology as well as biomarker content in various tissue types, while the build-in markerUMAP tool secures the efficiency of dimension reduction, making it viable as a general tool in the spatial analysis of high dimensional tissue image.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源