论文标题

合作生成的散列,用于营销和快速寒冷的推荐

Collaborative Generative Hashing for Marketing and Fast Cold-start Recommendation

论文作者

Zhang, Yan, Tsang, Ivor W., Duan, Lixin

论文摘要

Cold-Start在推荐系统中是一个关键问题,随着电子商务数据爆炸的爆炸。大多数旨在减轻冷启动问题的现有研究也称为混合推荐系统,该系统通过结合用户互动和用户/项目内容信息来了解用户和项目的表示。但是,以前的混合方法在用大规模物品的在线建议中经常遭受效率较差的瓶颈,因为它们旨在将用户和物品投影到连续的潜在空间,在线建议很昂贵。为此,我们提出了一个协作生成的哈希(CGH)框架,以通过将用户和项目表示为二进制代码来提高效率,然后可以使用快速的哈希搜索技术来加快在线建议。此外,提出的CGH可以生成潜在的用户或项目来进行营销应用程序,其中生成网络的设计具有最小描述长度(MDL)的原理,该原理用于学习紧凑且内容丰富的二进制代码。在两个公共数据集上进行的广泛实验表明,各种环境中建议的优点优于竞争基线,并分析其在营销应用程序中的可行性。

Cold-start has being a critical issue in recommender systems with the explosion of data in e-commerce. Most existing studies proposed to alleviate the cold-start problem are also known as hybrid recommender systems that learn representations of users and items by combining user-item interactive and user/item content information. However, previous hybrid methods regularly suffered poor efficiency bottlenecking in online recommendations with large-scale items, because they were designed to project users and items into continuous latent space where the online recommendation is expensive. To this end, we propose a collaborative generated hashing (CGH) framework to improve the efficiency by denoting users and items as binary codes, then fast hashing search techniques can be used to speed up the online recommendation. In addition, the proposed CGH can generate potential users or items for marketing application where the generative network is designed with the principle of Minimum Description Length (MDL), which is used to learn compact and informative binary codes. Extensive experiments on two public datasets show the advantages for recommendations in various settings over competing baselines and analyze its feasibility in marketing application.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源