论文标题

接收场尺寸优化,连续汇总

Receptive Field Size Optimization with Continuous Time Pooling

论文作者

Babicz, Dóra, Kontár, Soma, Pető, Márk, Fülöp, András, Szabó, Gergely, Horváth, András

论文摘要

合并操作是卷积神经网络的基石元素。这些元素会为神经元产生接收场,其中局部扰动应对输出激活产生最小的影响,从而提高网络的鲁棒性和不变性。在本文中,我们将介绍最常用的方法,最大池的变化版本,其中理论上的合并被连续的时间微分方程代替,该方程会产生位置敏感的池操作,更类似于生物学接受场。我们将介绍如何使用理想地适合GPU的离散操作来数字地近似这种连续方法。在我们的方法中,内核大小被扩散强度取代,这是一个连续的有价值参数,因此,可以通过梯度下降算法对其进行优化。我们将使用常用的网络体系结构和数据集评估持续合并对准确性和计算需求的影响。

The pooling operation is a cornerstone element of convolutional neural networks. These elements generate receptive fields for neurons, in which local perturbations should have minimal effect on the output activations, increasing robustness and invariance of the network. In this paper we will present an altered version of the most commonly applied method, maximum pooling, where pooling in theory is substituted by a continuous time differential equation, which generates a location sensitive pooling operation, more similar to biological receptive fields. We will present how this continuous method can be approximated numerically using discrete operations which fit ideally on a GPU. In our approach the kernel size is substituted by diffusion strength which is a continuous valued parameter, this way it can be optimized by gradient descent algorithms. We will evaluate the effect of continuous pooling on accuracy and computational need using commonly applied network architectures and datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源