论文标题

在黑暗中抓住:零拍物用触觉反馈抓住

Grasping in the Dark: Zero-Shot Object Grasping Using Tactile Feedback

论文作者

Ganguly, Kanishka, Sadrfaridpour, Behzad, Mantripragada, Pavan, Sanket, Nitin J., Fermüller, Cornelia, Aloimonos, Yiannis

论文摘要

抓握和操纵各种各样的物体是一项基本技能,它将决定机器人在房屋中的成功和广泛传播适应。已经提出了一些用于健壮操作的最终效果设计,但是当提供有关对象的先前信息或配备外部传感器以估算对象形状或尺寸时,它们大多可起作用。这样的方法仅限于许多射击或未知对象,并且容易出现外部估计系统中的估计错误。我们提出了一种方法来掌握和操纵以前看不见的或零拍的对象:没有任何事先的形状,大小,材料和重量特性的对象,仅使用触觉传感器的反馈,而触觉传感器的反馈与最新的触觉相反。当对象模型未知或从外部系统错误估算时,这种方法可以提供对对象的强大操纵。我们的方法灵感来自动物或人类如何通过使用皮肤的反馈来操纵物体的意识形态。我们的抓握和操纵围绕着一个简单的概念,即使对象稳定抓住,对象就会滑落。可以检测和抵消这种滑动,以使对象的类型,形状,大小,材料和重量不可知。我们方法的关键是一种新型的基于触觉反馈的控制器,可检测并补偿在掌握过程中的滑移。我们使用配备了Biotac SP触觉传感器的阴影灵巧的手来评估并证明了许多现实世界实验的建议方法,用于不同的物体形状,尺寸,重量和材料。我们的总体成功率为73.5%

Grasping and manipulating a wide variety of objects is a fundamental skill that would determine the success and wide spread adaptation of robots in homes. Several end-effector designs for robust manipulation have been proposed but they mostly work when provided with prior information about the objects or equipped with external sensors for estimating object shape or size. Such approaches are limited to many-shot or unknown objects and are prone to estimation errors from external estimation systems. We propose an approach to grasp and manipulate previously unseen or zero-shot objects: the objects without any prior of their shape, size, material and weight properties, using only feedback from tactile sensors which is contrary to the state-of-the-art. Such an approach provides robust manipulation of objects either when the object model is not known or when it is estimated incorrectly from an external system. Our approach is inspired by the ideology of how animals or humans manipulate objects, i.e., by using feedback from their skin. Our grasping and manipulation revolves around the simple notion that objects slip if not grasped stably. This slippage can be detected and counteracted for a robust grasp that is agnostic to the type, shape, size, material and weight of the object. At the crux of our approach is a novel tactile feedback based controller that detects and compensates for slip during grasp. We successfully evaluate and demonstrate our proposed approach on many real world experiments using the Shadow Dexterous Hand equipped with BioTac SP tactile sensors for different object shapes, sizes, weights and materials. We obtain an overall success rate of 73.5%

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源