论文标题

基于超声剪切波弹性图的自动肝纤维化诊断的多模式主动学习

Multi-Modal Active Learning for Automatic Liver Fibrosis Diagnosis based on Ultrasound Shear Wave Elastography

论文作者

Gao, Lufei, Zhou, Ruisong, Dong, Changfeng, Feng, Cheng, Li, Zhen, Wan, Xiang, Liu, Li

论文摘要

随着放射组学的发展,超声(US)成像等非侵入性诊断在自动肝纤维化诊断(ALFD)中起着非常重要的作用。由于嘈杂的数据,美国图像的昂贵注释,人工智能的应用(AI)辅助方法遇到了瓶颈。此外,单程美国数据的使用限制了分类结果的进一步改进。在这项工作中,我们创新地提出了一个具有主动学习(MMFN-AL)的多模式融合网络,以利用多种模式的信息,消除嘈杂的数据并降低注释成本。利用了四种图像模式和包括三种类型的剪切波弹力图(SWE)。一个新的数据集,其中包含来自214个候选者的这些模式,并进行了良好的收集和预处理,并从肝活检结果获得了标签。实验结果表明,我们所提出的方法的表现超过了最先进的性能,仅使用少于80%的数据,提出的融合网络可实现高AUC的高度89.27%,准确度为70.59%。

With the development of radiomics, noninvasive diagnosis like ultrasound (US) imaging plays a very important role in automatic liver fibrosis diagnosis (ALFD). Due to the noisy data, expensive annotations of US images, the application of Artificial Intelligence (AI) assisting approaches encounters a bottleneck. Besides, the use of mono-modal US data limits the further improve of the classification results. In this work, we innovatively propose a multi-modal fusion network with active learning (MMFN-AL) for ALFD to exploit the information of multiple modalities, eliminate the noisy data and reduce the annotation cost. Four image modalities including US and three types of shear wave elastography (SWEs) are exploited. A new dataset containing these modalities from 214 candidates is well-collected and pre-processed, with the labels obtained from the liver biopsy results. Experimental results show that our proposed method outperforms the state-of-the-art performance using less than 30% data, and by using only around 80% data, the proposed fusion network achieves high AUC 89.27% and accuracy 70.59%.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源