论文标题

社会化学101:学习推理社会和道德规范

Social Chemistry 101: Learning to Reason about Social and Moral Norms

论文作者

Forbes, Maxwell, Hwang, Jena D., Shwartz, Vered, Sap, Maarten, Choi, Yejin

论文摘要

社会规范 - 关于可接受的社会行为的不言而喻的常识性规则 - 对于理解人们在叙事中行动的根本原因和意图至关重要。例如,诸如“想在我的邻居上打电话给警察”之类的行动是为了使我们的行为提供信息的社会规范,例如“预计您报告犯罪”。 我们提出了社会化学,这是一种新的概念形式主义,可以研究人们在自然语言中描述的丰富现实生活中的人们的日常社会规范和道德判断。我们介绍了社会化学Chem-101,这是一个大规模的语料库,该语料库是292k规则,例如“在凌晨5点运行搅拌机”作为基本概念单位。每个人的判断,包括好与坏的社会判断,道德基金会,预期的文化压力和假定的合法性,每个人的判断力有12个不同的判断,并以12种不同的判断为例,每种脑海中的规则都超过450万个分类标签和自由文本描述。 基于最新神经模型的全面经验结果表明,社会规范的计算建模是一个有希望的研究方向。我们的模型框架“神经规范变压器”学习并概括了社会化学修正-101,以成功地理解以前看不见的情况,从而产生相关(并且可能是新颖的)属性属性的社会规则。

Social norms -- the unspoken commonsense rules about acceptable social behavior -- are crucial in understanding the underlying causes and intents of people's actions in narratives. For example, underlying an action such as "wanting to call cops on my neighbors" are social norms that inform our conduct, such as "It is expected that you report crimes." We present Social Chemistry, a new conceptual formalism to study people's everyday social norms and moral judgments over a rich spectrum of real life situations described in natural language. We introduce Social-Chem-101, a large-scale corpus that catalogs 292k rules-of-thumb such as "it is rude to run a blender at 5am" as the basic conceptual units. Each rule-of-thumb is further broken down with 12 different dimensions of people's judgments, including social judgments of good and bad, moral foundations, expected cultural pressure, and assumed legality, which together amount to over 4.5 million annotations of categorical labels and free-text descriptions. Comprehensive empirical results based on state-of-the-art neural models demonstrate that computational modeling of social norms is a promising research direction. Our model framework, Neural Norm Transformer, learns and generalizes Social-Chem-101 to successfully reason about previously unseen situations, generating relevant (and potentially novel) attribute-aware social rules-of-thumb.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源