论文标题

在较高的高阶解决方案的大量时间行为上,具有快速扩散的不平等现象

On large time behavior of solutions of higher order evolution inequalities with fast diffusion

论文作者

Kon'kov, A. A., Shishkov, A. E.

论文摘要

我们获得稳定条件和不平等解决方案薄弱解决方案的时间估计。 \ sum_ {|α| = M} \ partial^α A_α(X,T,U) - U_T \ ge f(x,t)g(u) \ Quad \ mbox {in}ω\ times(0,\ infty),$ω$是$ {\ mathbb r}^n $,$ m,$ m,n \ ge 1 $和$a_α$的非空的开放子集 |a_α(x,t,ζ)| \ le ζ^p, \ Quad |α| = m,$$,带有某些常数$ a> 0 $和$ 0 <p <1 $,几乎所有$(x,t)\ inω\ times(0,\ infty)$,以及[0,\ infty)$的所有$ζ\ in [0,\ infty)$。对于均匀差异不平等的解决方案,我们给出了确切的通用上限。

We obtain stabilization conditions and large time estimates for weak solutions of the inequality $$ \sum_{|α| = m} \partial^α a_α(x, t, u) - u_t \ge f (x, t) g (u) \quad \mbox{in } Ω\times (0, \infty), $$ where $Ω$ is a non-empty open subset of ${\mathbb R}^n$, $m, n \ge 1$, and $a_α$ are Caratheodory functions such that $$ |a_α(x, t, ζ)| \le A ζ^p, \quad |α| = m, $$ with some constants $A > 0$ and $0 < p < 1$ for almost all $(x, t) \in Ω\times (0, \infty)$ and for all $ζ\in [0, \infty)$. For solutions of homogeneous differential inequalities, we give an exact universal upper bound.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源