论文标题

学习欧拉的弹性模型用于医学图像分割

Learning Euler's Elastica Model for Medical Image Segmentation

论文作者

Chen, Xu, Luo, Xiangde, Zhao, Yitian, Zhang, Shaoting, Wang, Guotai, Zheng, Yalin

论文摘要

图像细分是图像处理中的一个基本话题,已经研究了数十年。基于深度学习的监督分割模型已经达到了最先进的性能,但是大多数通过使用像素损失功能进行训练而没有几何限制。受Euler的Elastica模型和深度学习领域引入的最新主动轮廓模型的启发,我们提出了一种具有Elastica(ACE)损耗函数的新型主动轮廓,该轮廓结合了Elastica(曲率和长度),以及区域信息作为图像分割任务的几何自然约束。我们介绍了平均曲率,即所有主要曲率的平均值,作为在表示ACE损耗函数中表示曲率之前的更有效图像。此外,根据平均曲率的定义,我们提出了一个快速解决方案,以通过使用Laplace操作员进行3D图像分割来近似三维(3D)的ACE损失。我们在四个2D和3D天然和生物医学图像数据集上评估了ACE损失函数。我们的结果表明,所提出的损失函数的表现优于不同分割网络上其他主流损失函数。我们的源代码可从https://github.com/hilab-git/aceloss获得。

Image segmentation is a fundamental topic in image processing and has been studied for many decades. Deep learning-based supervised segmentation models have achieved state-of-the-art performance but most of them are limited by using pixel-wise loss functions for training without geometrical constraints. Inspired by Euler's Elastica model and recent active contour models introduced into the field of deep learning, we propose a novel active contour with elastica (ACE) loss function incorporating Elastica (curvature and length) and region information as geometrically-natural constraints for the image segmentation tasks. We introduce the mean curvature i.e. the average of all principal curvatures, as a more effective image prior to representing curvature in our ACE loss function. Furthermore, based on the definition of the mean curvature, we propose a fast solution to approximate the ACE loss in three-dimensional (3D) by using Laplace operators for 3D image segmentation. We evaluate our ACE loss function on four 2D and 3D natural and biomedical image datasets. Our results show that the proposed loss function outperforms other mainstream loss functions on different segmentation networks. Our source code is available at https://github.com/HiLab-git/ACELoss.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源