论文标题

复制及其应用于弱收敛

Replication and Its Application to Weak Convergence

论文作者

Dong, Chi, Kouritzin, Michael A.

论文摘要

本文中,开发了一种方法来将功能,衡量和随机过程复制到紧凑的度量空间。许多结果很容易为复制对象建立,然后转回原始对象。在其中解决了两个问题以证明该方法:(1)生活在一般拓扑空间上的过程的有限维收敛。 (2)Skorokhod空间$ d(\ Mathbf {r}^{+}; e $作为一般的Tychonoff空间,给出了Skorokhod空间$ d(\ Mathbf {r}^{+}; e)的新紧密度和相对紧凑的标准。此处的方法还用于同伴论文中来建立以下方法:(3)存在,与Martingale问题解决方案的独特性和收敛性,(4)经典的Fujisaki-Kallianpur-Kunita和Duncan-Mortensen-Zakai-Zakai-Zakai-Zakai-Zakai-Zakai-Zakai滤波器方程式和固定过滤器,(5)最有限的信号测量值(5)6个标记(5)标记(5)标记(5)标记(5)标记(5)标记(5)piert to(5)piever to(5)piever to(5)。过程,(7)射线骑士理论都在一般环境中。

Herein, a methodology is developed to replicate functions, measures and stochastic processes onto a compact metric space. Many results are easily established for the replica objects and then transferred back to the original ones. Two problems are solved within to demonstrate the method: (1) Finite-dimensional convergence for processes living on general topological spaces. (2) New tightness and relative compactness criteria are given for the Skorokhod space $D(\mathbf{R}^{+};E)$ with $E$ being a general Tychonoff space. The methods herein are also used in companion papers to establish the: (3) existence of, uniqueness of and convergence to martingale problem solutions, (4) classical Fujisaki-Kallianpur-Kunita and Duncan-Mortensen-Zakai filtering equations and stationary filters, (5) finite-dimensional convergence to stationary signal-filter pairs, (6) invariant measures of Markov processes, and (7) Ray-Knight theory all in general settings.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源