论文标题

通过逻辑校准的网络物理系统的不确定性进行预测性监测

Predictive Monitoring with Logic-Calibrated Uncertainty for Cyber-Physical Systems

论文作者

Ma, Meiyi, Stankovic, John, Bartocci, Ezio, Feng, Lu

论文摘要

预测性监测 - 对未来状态进行预测,并监视预测的国家是否满足要求 - 在支持网络物理系统(CPS)的决策方面提供了有希望的范式。现有的预测监视作品主要集中于监视单个预测而不是顺序预测。我们开发了一种新的方法,用于监测贝叶斯复发性神经网络(RNN)产生的顺序预测,该预测可以捕获CPS中固有的不确定性,从我们对现实世界中CPS数据集的研究中的见解。我们提出了一种名为\ emph {带有不确定性的信号时间逻辑}(stl-u)的新逻辑,以监视包含贝叶斯RNN预测的无限序列集的流管。我们根据流管中的全部或某些序列满足要求,定义了STL-U强和弱满意度语义。我们还开发了计算置信度范围的方法,在该置信度范围内保证了流动管的强烈(弱)满足STL-U公式。此外,我们制定了利用STL-U监测结果的新标准来校准贝叶斯RNN的不确定性估计。最后,我们通过使用现实世界数据集和模拟智能城市案例研究的实验评估了所提出的方法,该方法表明,基于STL-U的预测监测方法的结果非常令人鼓舞。

Predictive monitoring -- making predictions about future states and monitoring if the predicted states satisfy requirements -- offers a promising paradigm in supporting the decision making of Cyber-Physical Systems (CPS). Existing works of predictive monitoring mostly focus on monitoring individual predictions rather than sequential predictions. We develop a novel approach for monitoring sequential predictions generated from Bayesian Recurrent Neural Networks (RNNs) that can capture the inherent uncertainty in CPS, drawing on insights from our study of real-world CPS datasets. We propose a new logic named \emph{Signal Temporal Logic with Uncertainty} (STL-U) to monitor a flowpipe containing an infinite set of uncertain sequences predicted by Bayesian RNNs. We define STL-U strong and weak satisfaction semantics based on if all or some sequences contained in a flowpipe satisfy the requirement. We also develop methods to compute the range of confidence levels under which a flowpipe is guaranteed to strongly (weakly) satisfy an STL-U formula. Furthermore, we develop novel criteria that leverage STL-U monitoring results to calibrate the uncertainty estimation in Bayesian RNNs. Finally, we evaluate the proposed approach via experiments with real-world datasets and a simulated smart city case study, which show very encouraging results of STL-U based predictive monitoring approach outperforming baselines.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源