论文标题
伯科维奇朱莉娅(Berkovich Julia
Uniform perfectness of the Berkovich Julia sets in non-archimedean dynamics
论文作者
论文摘要
我们表明,在代数封闭的字段上,在投影线上的合理函数$ f $> 1 $相对于非平凡和非架构的绝对值,该字段与$ f $ $ f $均匀完美时,相对于非平凡且非架构的绝对值。作为应用程序,还建立了$ f $的每个伯科维奇FATOU组件的边界的统一规律性。
We show that a rational function $f$ of degree $>1$ on the projective line over an algebraically closed field that is complete with respect to a non-trivial and non-archimedean absolute value has no potentially good reductions if and only if the Berkovich Julia set of $f$ is uniformly perfect. As an application, a uniform regularity of the boundary of each Berkovich Fatou component of $f$ is also established.