论文标题

mod- $ $ p $ galois表示,不是由阿伯利亚品种引起的

Mod-$p$ Galois representations not arising from abelian varieties

论文作者

Chidambaram, Shiva

论文摘要

众所周知,任何Galois表示$ρ:g _ {\ Mathbb {Q}} \ rightArrow \ Mathrm {gl}(2,2,\ Mathbb {f} _p)$,确定性等于mod- $ $ p $ cyclotomic特征,从$ p $ cyclotomic the $ p $ p $ - ifipt $ -tors $ ifipt $ ellipt curveve,如果$ p \ leq 5 $。在尺寸$ g = 2 $中,当$ p \ le 3 $时,众所周知,在$ \ mathrm {gsp}中价值的任何galois表示形式(4,\ m athbb {f} _p)$带有环体齐友的字符。在本文中,我们研究了所有Primes $ p $和dimensions $ g \ ge 2 $的问题。当$ g \ ge 2 $和$(g,p)\ neq(2,2)$,$(2,3)$,$(3,2)$时,我们证明在$ \ mathbb {q} $中存在$ \ mathbb {q} $ ym $ \ sim v,gsp}(gsp}(2g,\ mathbbbb {f sim sim and and anclial can y an Cy an Cy anclial can ar can ar can ar can)任何$ g $ dimensional Abelian品种的$ p $ torsion表示,超过$ \ mathbb {q} $。

It is known that any Galois representation $ρ: G_{\mathbb{Q}} \rightarrow \mathrm{GL}(2,\mathbb{F}_p)$ with determinant equal to the mod-$p$ cyclotomic character, arises from the $p$-torsion of an elliptic curve over $\mathbb{Q}$, if and only if $p \leq 5$. In dimension $g = 2$, when $p \le 3$, it is again known that any Galois representation valued in $\mathrm{GSp}(4,\mathbb{F}_p)$ with cyclotomic similitude character arises from an abelian surface. In this paper, we study this question for all primes $p$ and dimensions $g \ge 2$. When $g \ge 2$ and $(g,p) \neq (2,2)$, $(2,3)$, $(3,2)$, we prove the existence of a Galois representation over $\mathbb{Q}$ valued in $\mathrm{GSp}(2g,\mathbb{F}_p)$ with cyclotomic similitude character, that cannot arise as the $p$-torsion representation of any $g$-dimensional abelian variety over $\mathbb{Q}$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源