论文标题

公平分配治疗的固有权衡

Inherent Trade-offs in the Fair Allocation of Treatments

论文作者

He, Yuzi, Burghardt, Keith, Guo, Siyi, Lerman, Kristina

论文摘要

明确和隐性的偏见笼罩了人类的判断,导致对少数群体的歧视治疗。算法公平的基本目标是通过学习改善整体结果的同时为受保护的阶级提供公平待遇的政策来避免人类判断中的陷阱。在本文中,我们提出了一个因果框架,该框架从数据主题中学习最佳干预政策受到公平限制。我们定义了两种治疗偏见的措施,并推断最佳治疗分配,从而最大程度地减少了偏见,同时优化了整体结果。我们证明了平衡公平和整体利益的困境;但是,在某些情况下(平权行动)在某些情况下允许优先处理受保护的班级可以显着提高整体收益,同时也可以保持公平。我们将我们的框架应用于包含学生成绩的数据,并显示如何使用公平提高学生考试成绩的现实世界政策。我们的框架提供了一种在现实环境中学习公平治疗政策的原则方法。

Explicit and implicit bias clouds human judgement, leading to discriminatory treatment of minority groups. A fundamental goal of algorithmic fairness is to avoid the pitfalls in human judgement by learning policies that improve the overall outcomes while providing fair treatment to protected classes. In this paper, we propose a causal framework that learns optimal intervention policies from data subject to fairness constraints. We define two measures of treatment bias and infer best treatment assignment that minimizes the bias while optimizing overall outcome. We demonstrate that there is a dilemma of balancing fairness and overall benefit; however, allowing preferential treatment to protected classes in certain circumstances (affirmative action) can dramatically improve the overall benefit while also preserving fairness. We apply our framework to data containing student outcomes on standardized tests and show how it can be used to design real-world policies that fairly improve student test scores. Our framework provides a principled way to learn fair treatment policies in real-world settings.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源