论文标题

平均场理论及其实验签名

Mean-Field Theories for Depinning and their Experimental Signatures

论文作者

ter Burg, Cathelijne, Wiese, Kay Joerg

论文摘要

平均场理论是一个近似值,将扩展系统替换为几个变量。对于弹性歧管的含量,这些是其质量$ u $中心的位置,以及部队$ f(u)$的统计数据。有两个建议对后者进行建模:作为随机步行(ABBM模型),或在整数$ u $(离散的粒子模型,DPM)上作为不相关的力。尽管对于许多实验,ABBM(在文献中误等等同于平均场理论)进行了定量正确的预测,但微观障碍力量相关性不能线性地生长,因此作为随机行走而无可争议。即使是在较小距离上这样做的有效(重新归一化的)功能也很大距离。我们建议将力建模为Ornstein Uhlenbeck过程。后者是在小尺度上的随机行走,并且在大尺度上是不相关的。通过连接到两个限制的结果,我们在很大程度上可以分析地求解该模型,从而使我们能够在所有制度中描述速度,雪崩大小和持续时间的分布。为了建立这种过渡的实验签名,我们研究响应功能以及位置$ u $,速度$ \ dot u $和强制$ f $在速度下驾驶的情况下的相关函数,并使用速度$ v> 0 $。虽然$ v = 0 $ force或位置相关性在起源时具有尖尖,但该尖齿以有限的驾驶速度舍入。我们通过速度为此进行了详细的分析分析,这使我们在给定的实验数据中提取响应函数的时间尺度,并在$ v = 0 $下重建力量强度相关器。后者是现场理论的核心对象,因此包含有关所讨论的普遍性类别的详细信息。我们通过仔细的数值模拟在范围内延伸了多达十个阶,我们测试了我们的预测。

Mean-field theory is an approximation replacing an extended system by a few variables. For depinning of elastic manifolds, these are the position of its center of mass $u$, and the statistics of the forces $F(u)$. There are two proposals to model the latter: as a random walk (ABBM model), or as uncorrelated forces at integer $u$ (discretized particle model, DPM). While for many experiments ABBM (in the literature misleadingly equated with mean-field theory) makes quantitatively correct predictions, the microscopic disorder force-force correlations cannot grow linearly, and thus unboundedly as a random walk. Even the effective (renormalized) disorder forces which do so at small distances are bounded at large distances. We propose to model forces as an Ornstein Uhlenbeck process. The latter behaves as a random walk at small scales, and is uncorrelated at large ones. By connecting to results in both limits, we solve the model largely analytically, allowing us to describe in all regimes the distributions of velocity, avalanche size and duration. To establish experimental signatures of this transition, we study the response function, and the correlation function of position $u$, velocity $\dot u$ and forces $F$ under slow driving with velocity $v>0$. While at $v=0$ force or position correlations have a cusp at the origin, this cusp is rounded at a finite driving velocity. We give a detailed analytic analysis for this rounding by velocity, which allows us, given experimental data, to extract the time-scale of the response function, and to reconstruct the force-force correlator at $v=0$. The latter is the central object of the field theory, and as such contains detailed information about the universality class in question. We test our predictions by careful numerical simulations extending over up to ten orders in magnitude.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源