论文标题

使用Rényi-$α$ entropy

Monogamy relations and upper bounds for the generalized $W$-class states using Rényi-$α$ entropy

论文作者

Liang, Yanying, Zheng, Zhu-Jun, Zhu, Chuan-Jie

论文摘要

我们研究了与rényi-$α$熵有关的广义$ w $ class状态的一夫一妻制关系和上限。首先,我们提出了一个分析公式,以介绍较低的$ w $ class状态的降低密度矩阵的援助(r $α$ e)和rényii-$ $α$的援助(REOA)。根据分析公式,我们在r $α$ e和reoa方面展示了广义$ w $级别状态的一夫一妻制和一夫多妻制关系。然后,我们就r $α$ e的广义$ w $ class状态提供了上限。接下来,就并发和凸式式延长延长的负面性而言,我们为广义$ w $ class状态提供更紧密的一夫一妻制关系,并通过r $α$ e与同意之间的分析表达来获得r $α$ e的一夫一妻制关系。最后,我们将结果应用于量子游戏,并介绍了限制在广义$ w $ class状态的量子游戏非经典性的新界限。

We investigate monogamy relations and upper bounds for generalized $W$-class states related to the Rényi-$α$ entropy. First, we present an analytical formula on Rényi-$α$ entanglement (R$α$E) and Rényi-$α$ entanglement of assistance (REoA) of a reduced density matrix for a generalized $W$-class states. According to the analytical formula, we show monogamy and polygamy relations for generalized $W$-class states in terms of R$α$E and REoA. Then we give the upper bounds for generalized $W$-class states in terms of R$α$E. Next, we provide tighter monogamy relations for generalized $W$-class states in terms of concurrence and convex-roof extended negativity and obtain the monogamy relations for R$α$E by the analytical expression between R$α$E and concurrence. Finally, we apply our results into quantum games and present a new bound of the nonclassicality of quantum games restricting to generalized $W$-class states.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源