论文标题
基于梯度的算法,用于通过仿真进行凸离散优化
Gradient-based Algorithms for Convex Discrete Optimization via Simulation
论文作者
论文摘要
我们通过具有高维离散决策空间的模拟问题提出了一般凸优化的新的顺序仿真 - 优化算法。通过随机仿真复制评估每次选择离散决策变量的性能。如果知道不确定性的整体上的上限,我们提出的模拟优化算法利用离散的凸结构,并可以保证以很高的可能性找到在任何给定用户指定的精度级别内最接近最佳的解决方案。所提出的算法适用于任何一般凸问题,并且通过模拟成本的上限证明了效率。上限表明了对决策空间的维度和规模的多项式依赖性。对于通过模拟问题进行某些离散优化,梯度估计器可能以低成本以及单个仿真复制提供。通过整合可能存在偏见的梯度估计器,我们提出了模拟优化算法,以实现最佳保证,而在中等假设下对偏差的依赖性降低了对维度的依赖。
We propose new sequential simulation-optimization algorithms for general convex optimization via simulation problems with high-dimensional discrete decision space. The performance of each choice of discrete decision variables is evaluated via stochastic simulation replications. If an upper bound on the overall level of uncertainties is known, our proposed simulation-optimization algorithms utilize the discrete convex structure and are guaranteed with high probability to find a solution that is close to the best within any given user-specified precision level. The proposed algorithms work for any general convex problem and the efficiency is demonstrated by proven upper bounds on simulation costs. The upper bounds demonstrate a polynomial dependence on the dimension and scale of the decision space. For some discrete optimization via simulation problems, a gradient estimator may be available at low costs along with a single simulation replication. By integrating gradient estimators, which are possibly biased, we propose simulation-optimization algorithms to achieve optimality guarantees with a reduced dependence on the dimension under moderate assumptions on the bias.