论文标题
来自绣球花模拟的星系簇的恒星质量功能和密度曲线的演变,$ 0 <z <1.5 $
The stellar mass function and evolution of the density profile of galaxy clusters from the Hydrangea simulations at $0<z<1.5$
论文作者
论文摘要
星系簇是研究环境对星系形成和进化的影响的出色探针。除了高质量的观察数据外,还需要准确的宇宙学模拟来提高我们对这些系统中星系进化的理解。在这项工作中,我们在不同的红移($ 0 <z <1.5 $)上比较了大量星系群($> 10^{14} \ textrm {m} _ {\ odot} $)的预测,并预测24个大众callosigive simers a suite from varsomical simalsial simulation subles callymolical simulation nymalnamic Suberter {$ \ textrm {m} _ {\ odot} $ at $ z = 0 $)。我们比较了星系簇的三个基本可观察物:总恒星质量与光晕质量比,恒星质量函数(SMF)和集群星系的径向质量密度谱。在其中的前两个中,模拟与观测值非常吻合,尽管$ M_ \ Star \ STAR \ LISSESIM 10^{10} \ textrm {m} _ {\ odot} $ galaxies $ z \ gtrsim 1 $。与降低暗物质光环浓度相比,簇星系的NFW浓度随红移而增加。因此,这种先前观察到的行为是由于与卫星种群相比,平滑DM光环的质化不同。但是,我们发现差异是因为模拟预测恒星浓度比在较低的红移($ z <0.3 $)上观察到的恒星浓度高,约为$ \ $ \ $ 2。这可能是由于模拟中的选择偏差,或源于其内部卫星光环的堆积和剥离中的缺点。
Galaxy clusters are excellent probes to study the effect of environment on galaxy formation and evolution. Along with high-quality observational data, accurate cosmological simulations are required to improve our understanding of galaxy evolution in these systems. In this work, we compare state-of-the-art observational data of massive galaxy clusters ($>10^{14} \textrm{M}_{\odot}$) at different redshifts ($0<z<1.5$) with predictions from the Hydrangea suite of cosmological hydrodynamic simulations of 24 massive galaxy clusters ($>10^{14} \textrm{M}_{\odot}$ at $z=0$). We compare three fundamental observables of galaxy clusters: the total stellar mass to halo mass ratio, the stellar mass function (SMF), and the radial mass density profile of the cluster galaxies. In the first two of these, the simulations agree well with the observations, albeit with a slightly too high abundance of $M_\star \lesssim 10^{10} \textrm{M}_{\odot}$ galaxies at $z \gtrsim 1$. The NFW concentrations of cluster galaxies increase with redshift, in contrast to the decreasing dark matter halo concentrations. This previously observed behaviour is therefore due to a qualitatively different assembly of the smooth DM halo compared to the satellite population. Quantitatively, we however find a discrepancy in that the simulations predict higher stellar concentrations than observed at lower redshifts ($z<0.3$), by a factor of $\approx$2. This may be due to selection bias in the simulations, or stem from shortcomings in the build-up and stripping of their inner satellite halo.