论文标题

分类杆子的点

Classifying pole-skipping points

论文作者

Ahn, Yongjun, Jahnke, Viktor, Jeong, Hyun-Sik, Kim, Keun-Young, Lee, Kyung-Sun, Nishida, Mitsuhiro

论文摘要

我们阐明了杆子的一般数学和物理特性。为此,我们分析双曲线空间中的标量和向量场。之所以选择此设置,是因为它足够简单,可以允许我们获得绿色功能的分析表达式并明确检查所有内容,同时包含杆子鞋底的所有基本特征。我们将杆子的点分类为三种类型(I型,II,III)。 I型和II型由绿色函数的(极限)行为在杆子滑动点附近区分。 III类型可以在非全能$IΩ$值下出现,这是由于特定的UV条件,与I和II类型相反,I和II类型与非唯一的近距离边界条件有关。我们还阐明了绿色功能的杆刀结构与近马分析之间的关系。我们指出,在某些情况下,仅靠近水压分析可能无法捕获杆子的存在和特性。

We clarify general mathematical and physical properties of pole-skipping points. For this purpose, we analyse scalar and vector fields in hyperbolic space. This setup is chosen because it is simple enough to allow us to obtain analytical expressions for the Green's function and check everything explicitly, while it contains all the essential features of pole-skipping points. We classify pole-skipping points in three types (type-I, II, III). Type-I and Type-II are distinguished by the (limiting) behavior of the Green's function near the pole-skipping points. Type-III can arise at non-integer $iω$ values, which is due to a specific UV condition, contrary to the types I and II, which are related to a non-unique near-horizon boundary condition. We also clarify the relation between the pole-skipping structure of the Green's function and the near-horizon analysis. We point out that there are subtle cases where the near-horizon analysis alone may not be able to capture the existence and properties of the pole-skipping points.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源