论文标题

自动磁通:合作多组分体系结构搜索全景分割

Auto-Panoptic: Cooperative Multi-Component Architecture Search for Panoptic Segmentation

论文作者

Wu, Yangxin, Zhang, Gengwei, Xu, Hang, Liang, Xiaodan, Lin, Liang

论文摘要

Panoptic分割是一种新的流行测试床,用于最先进的整体场景理解方法,并需要同时分割前景事物和背景内容。最先进的综合分割网络在不同的网络组件中表现出很高的结构复杂性,即骨干,基于提案的前景分支,基于分割的背景分支以及跨分支的特征融合模块,这在很大程度上依赖于专家知识和乏味的试验。在这项工作中,我们提出了一个高效,合作且高度自动化的框架,以同时搜索所有主要组件,包括基于统一的全景分割管道中的主链,分割分支和特征融合模块,该模块基于盛行的一流的单发网络体系结构搜索(NAS)范式。值得注意的是,我们通过利用新提出的新型型内搜索空间和面向问题的模块化搜索空间的优势将常见的单任务NA扩展到多组件场景,这有助于我们获得最佳的网络体系结构,这些网络体系结构不仅在实例分割和语义段任务中都表现出色,还可以意识到与互惠关系之间的相关性和背景关系。为了减轻通过将NAS应用于复杂的网络体系结构所产生的巨大计算负担,我们提出了一种新颖的路径优先贪婪的搜索策略,以找到强大的可转让架构,并大大减少了搜索开销。我们的搜索架构,即自动式式式式式建筑,在具有挑战性的可可和ADE20K基准测试方面实现了新的最先进。此外,进行了广泛的实验,以证明路径优先政策的有效性以及自动跨不同数据集的可转移性。代码和模型可在以下网址提供:https://github.com/jacobew/autopanoptic。

Panoptic segmentation is posed as a new popular test-bed for the state-of-the-art holistic scene understanding methods with the requirement of simultaneously segmenting both foreground things and background stuff. The state-of-the-art panoptic segmentation network exhibits high structural complexity in different network components, i.e. backbone, proposal-based foreground branch, segmentation-based background branch, and feature fusion module across branches, which heavily relies on expert knowledge and tedious trials. In this work, we propose an efficient, cooperative and highly automated framework to simultaneously search for all main components including backbone, segmentation branches, and feature fusion module in a unified panoptic segmentation pipeline based on the prevailing one-shot Network Architecture Search (NAS) paradigm. Notably, we extend the common single-task NAS into the multi-component scenario by taking the advantage of the newly proposed intra-modular search space and problem-oriented inter-modular search space, which helps us to obtain an optimal network architecture that not only performs well in both instance segmentation and semantic segmentation tasks but also be aware of the reciprocal relations between foreground things and background stuff classes. To relieve the vast computation burden incurred by applying NAS to complicated network architectures, we present a novel path-priority greedy search policy to find a robust, transferrable architecture with significantly reduced searching overhead. Our searched architecture, namely Auto-Panoptic, achieves the new state-of-the-art on the challenging COCO and ADE20K benchmarks. Moreover, extensive experiments are conducted to demonstrate the effectiveness of path-priority policy and transferability of Auto-Panoptic across different datasets. Codes and models are available at: https://github.com/Jacobew/AutoPanoptic.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源