论文标题
深入学习铁电HFO $ _2 $的精确力场
Deep Learning of Accurate Force Field of Ferroelectric HfO$_2$
论文作者
论文摘要
基于HFO $ _2 $的薄膜在HFO $ _2 $ _2中发现铁电性为使用这种与硅兼容的铁电的新机会打开了新的机会,以实现低功率逻辑电路和高密度的非挥发性记忆。铁电的功能性能与它们对外部刺激的动态反应密切相关,例如有限温度下的电场。分子动力学是研究大长度和时间尺度上的动力学过程的理想技术,尽管其对新材料的应用通常受到经典力场的可用性和准确性有限和准确性的阻碍。在这里,我们介绍了使用并发学习过程从{\ em ab intibio}数据中学到的HFO $ _2 $的基于神经网络的深度原子间力场。该模型电位能够预测诸如弹性常数,状态方程,声子分散关系以及各种HAFNIA多晶型物的相变屏障,其准确性与密度功能理论计算相当。通过使用同含量 - 等热分子动力学模拟,HFO $ _2 $的温度驱动的铁电 - - 偏移相变的实验序列的再现,该模型潜力的有效性得到了进一步的证实。我们建议一种将HFO $ _2 $扩展到包括掺杂剂和缺陷在内的相关材料系统的通用方法。
The discovery of ferroelectricity in HfO$_2$-based thin films opens up new opportunities for using this silicon-compatible ferroelectric to realize low-power logic circuits and high-density non-volatile memories. The functional performances of ferroelectrics are intimately related to their dynamic responses to external stimuli such as electric fields at finite temperatures. Molecular dynamics is an ideal technique for investigating dynamical processes on large length and time scales, though its applications to new materials is often hindered by the limited availability and accuracy of classical force fields. Here we present a deep neural network-based interatomic force field of HfO$_2$ learned from {\em ab initio} data using a concurrent learning procedure. The model potential is able to predict structural properties such as elastic constants, equation of states, phonon dispersion relationships, and phase transition barriers of various hafnia polymorphs with accuracy comparable with density functional theory calculations. The validity of this model potential is further confirmed by the reproduction of experimental sequences of temperature-driven ferroelectric-paraelectric phase transitions of HfO$_2$ with isobaric-isothermal ensemble molecular dynamics simulations. We suggest a general approach to extend the model potential of HfO$_2$ to related material systems including dopants and defects.