论文标题
评估在不完整的三级数据的多个插补中,以适应相互作用和非线性术语的方法评估
Evaluation of approaches for accommodating interactions and non-linear terms in multiple imputation of incomplete three-level data
论文作者
论文摘要
在健康研究中,由聚集在较大单位的个体的重复措施产生的三级数据结构在健康研究中很常见。缺少数据在此类研究中很突出,并且通常通过多个插补(MI)来处理。尽管可以使用几种MI方法来说明三级结构,包括对单层和两级方法的适应,但是当实体分析模型包括相互作用或二次效应时,这些效果也需要在插入模型中适应。在此类分析中,实质模型兼容(SMC)MI在单级数据的背景下显示出巨大的希望。尽管多级SMC MI的最新发展,但迄今为止,只有一种明确处理不完整的三级数据的方法。另外,研究人员可以对单级和两级MI方法或两级SMC-MI方法使用务实的适应。我们在三个三级随机效应分析模型的背景下通过仿真来描述它们,这些模型涉及不完整的时间变化的暴露与时间之间的相互作用,时间变化的暴露与不完整的时间固定混杂因素之间的相互作用,或暴露的Quadratic效应。结果表明,当目标分析涉及与时间的相互作用时,所有考虑的方法在偏差和精度方面都表现良好,但是当目标分析涉及时间变化的暴露与不完整的时间固定混杂因素之间的相互作用时,三级SMC MI方法的表现最佳。我们说明了使用从童年到青春期过渡研究的数据进行的方法。
Three-level data structures arising from repeated measures on individuals clustered within larger units are common in health research studies. Missing data are prominent in such studies and are often handled via multiple imputation (MI). Although several MI approaches can be used to account for the three-level structure, including adaptations to single- and two-level approaches, when the substantive analysis model includes interactions or quadratic effects these too need to be accommodated in the imputation model. In such analyses, substantive model compatible (SMC) MI has shown great promise in the context of single-level data. While there have been recent developments in multilevel SMC MI, to date only one approach that explicitly handles incomplete three-level data is available. Alternatively, researchers can use pragmatic adaptations to single- and two-level MI approaches, or two-level SMC-MI approaches. We describe the available approaches and evaluate them via simulation in the context of a three three-level random effects analysis models involving an interaction between the incomplete time-varying exposure and time, an interaction between the time-varying exposure and an incomplete time-fixed confounder, or a quadratic effect of the exposure. Results showed that all approaches considered performed well in terms of bias and precision when the target analysis involved an interaction with time, but the three-level SMC MI approach performed best when the target analysis involved an interaction between the time-varying exposure and an incomplete time-fixed confounder, or a quadratic effect of the exposure. We illustrate the methods using data from the Childhood to Adolescence Transition Study.