论文标题
圆盘在莫比乌斯带上带有丝带的可靠性
The realizability of discs with ribbons on a Möbius strip
论文作者
论文摘要
n个字母上的象形文字是字母1,2,。 。 。 ,n的长度为2N,使每个字母在序列中出现两次。以相同的顺序将象形文字的字母顺序放在象形文字的侧面。对于每个字母,我将缎带的末端粘在对应于字母i的侧面的底部。将所得的表面称为圆盘,带有对应于象形文字H的丝带。如果可以从Möbius带中切出对应于H的丝带,则在Möbius带上象形H的H hieroghh H在Möbius带上弱可见。我们给出了弱的可实现性标准,该标准给出了二次(字母数量)算法的标准。我们的标准基于Mohar的标准,用于在Möbius带上带有带丝带的磁盘的可靠性。
An hieroglyph on n letters is a cyclic sequence of the letters 1,2, . . . , n of length 2n such that each letter appears in the sequence twice.Take an hieroglyph H. Take a convex polygon with 2n sides. Put the letters in the sequence of letters of the hieroglyph on the sides of the convexpolygon in the same order. For each letter i glue the ends of a ribbon to thepair of sides corresponding to the letter i. Call the resulting surface a disk with ribbons corresponding to the hieroglyph H. An hieroglyph H is weakly realizable on the Möbius strip if some disk with ribbons corresponding to H can be cut out of the Möbius strip. We give a criterion for weak realizability, which gives a quadratic (in the number of letters) algorithm. Our criterion is based on the Mohar criterion for realizability of a disk with ribbons in the Möbius strip.