论文标题

递归随机收缩重新审视

Recursive Random Contraction Revisited

论文作者

Karger, David R., Williamson, David P.

论文摘要

在本说明中,我们重新访问了Karger和Stein的递归随机收缩算法,以查找图中的最小切割。我们的重新访问是由Fox,Panigrahi和Zhang的论文引起的,该论文将Karger-Stein算法扩展到最低限度和最低$ K $ - $ k $ - 超图。当专门研究图的情况时,该算法与原始的Karger-Stein算法有所不同。我们表明,在这种情况下,分析变得特别干净:我们可以证明,该算法返回$ n $ node图中的固定最小切割的可能性在下面以$ 1/(2H_N_N-2)$限制,其中$ h_n $是$ n $ n $ n $ th谐波数。我们还考虑了该算法的其他类似变体,并表明没有这种算法可以实现渐近地找到固定最小切割的概率。

In this note, we revisit the recursive random contraction algorithm of Karger and Stein for finding a minimum cut in a graph. Our revisit is occasioned by a paper of Fox, Panigrahi, and Zhang which gives an extension of the Karger-Stein algorithm to minimum cuts and minimum $k$-cuts in hypergraphs. When specialized to the case of graphs, the algorithm is somewhat different than the original Karger-Stein algorithm. We show that the analysis becomes particularly clean in this case: we can prove that the probability that a fixed minimum cut in an $n$ node graph is returned by the algorithm is bounded below by $1/(2H_n-2)$, where $H_n$ is the $n$th harmonic number. We also consider other similar variants of the algorithm, and show that no such algorithm can achieve an asymptotically better probability of finding a fixed minimum cut.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源