论文标题
学习的无限元素
Learned infinite elements
论文作者
论文摘要
我们研究了无界域上标量时谐波方程的数值解,该域可以分为有界的内部域和具有可分离几何形状的外部域。要计算内部域中的溶液,必须将外部结构域的Dirichlet到Neumann(DTN)图的近似值施加为人工耦合边界上的透明边界条件。尽管DTN映射可以通过变量分离来计算,但它是具有密集矩阵表示的非局部运算符,因此计算效率低下。因此,在文献中,使用包括不同类型的无限元素,局部非反射边界条件和完美匹配的层进行了多种方法,对文献进行了深入研究,通常涉及其他自由度的稀疏矩阵(通常涉及其他自由度)对DTN图的近似值。这些稀疏矩阵的条目是通过分析得出的,例如从溶液的转换或渐近扩展到外部结构域中的微分方程。相比之下,在本文中,我们建议通过将优化问题作为预处理步骤来“学习” DTN映射中的矩阵条目。理论上的考虑表明,随着无限元素自由度的增加,学到的无限元素的近似质量呈指数改进,这在数值实验中得到了证实。这些数值研究还表明,学到的无限元素的表现优于Helmholtz方程的最先进方法。同时,学到的无限元素比传统方法更灵活,例如,对于涉及强烈反射的外部领域,例如,对于太阳的大气而言,它的工作方式类似,这种方法是强烈的不均匀质量和表现出电晕的反射。
We study the numerical solution of scalar time-harmonic wave equations on unbounded domains which can be split into a bounded interior domain of primary interest and an exterior domain with separable geometry. To compute the solution in the interior domain, approximations to the Dirichlet-to-Neumann (DtN) map of the exterior domain have to be imposed as transparent boundary conditions on the artificial coupling boundary. Although the DtN map can be computed by separation of variables, it is a nonlocal operator with dense matrix representations, and hence computationally inefficient. Therefore, approximations of DtN maps by sparse matrices, usually involving additional degrees of freedom, have been studied intensively in the literature using a variety of approaches including different types of infinite elements, local non-reflecting boundary conditions, and perfectly matched layers. The entries of these sparse matrices are derived analytically, e.g. from transformations or asymptotic expansions of solutions to the differential equation in the exterior domain. In contrast, in this paper we propose to `learn' the matrix entries from the DtN map in its separated form by solving an optimization problem as a preprocessing step. Theoretical considerations suggest that the approximation quality of learned infinite elements improves exponentially with increasing number of infinite element degrees of freedom, which is confirmed in numerical experiments. These numerical studies also show that learned infinite elements outperform state-of-the-art methods for the Helmholtz equation. At the same time, learned infinite elements are much more flexible than traditional methods as they, e.g., work similarly well for exterior domains involving strong reflections, for example, for the atmosphere of the Sun, which is strongly inhomogeneous and exhibits reflections at the corona.