论文标题

Twitter机器人的发现和分类

Discovery and classification of Twitter bots

论文作者

Shevtsov, Alexander Shevtsov Alexander, Oikonomidou, Maria, Antonakaki, Despoina, Pratikakis, Polyvios, Kanterakis, Alexandros, Ioannidis, Sotiris, Fragopoulou, Paraskevi

论文摘要

每天都有大量的人使用在线社交网络。因此,这些平台成为试图吸引大型受众注意并影响观念或观点的代理商的吸引力目标。僵尸网络是由单个代理控制的自动化帐户的集合,是发挥最大影响力的常见机制。随着时间的流逝,僵尸网络可用于更好地渗透社会图,并创造社区行为的幻想,扩大他们的信息并增加说服力。 本文研究了Twitter僵尸网络,其行为,与用户社区的互动以及随着时间的推移的发展。我们分析了Twitter流量子集的密集爬网,相当于希腊语讲的Twitter用户在36个月的时间内几乎所有互动。我们发现了一百万个事件,看似无关的帐户在几乎同一时间上发布了几乎相同的内容。我们过滤了这些并发的内容注入事件,并检测到了一组1,850个帐户,这些帐户反复表现出这种行为模式,表明它们是完全或部分由同一软件控制和策划的。我们发现了短暂出现并消失的僵尸网络,以及跨越数据集持续时间的发展和生长的僵尸网络。我们分析了机器人帐户和人类用户之间的统计差异,以及与用户社区和Twitter趋势主题的僵尸网络互动。

A very large number of people use Online Social Networks daily. Such platforms thus become attractive targets for agents that seek to gain access to the attention of large audiences, and influence perceptions or opinions. Botnets, collections of automated accounts controlled by a single agent, are a common mechanism for exerting maximum influence. Botnets may be used to better infiltrate the social graph over time and to create an illusion of community behavior, amplifying their message and increasing persuasion. This paper investigates Twitter botnets, their behavior, their interaction with user communities and their evolution over time. We analyzed a dense crawl of a subset of Twitter traffic, amounting to nearly all interactions by Greek-speaking Twitter users for a period of 36 months. We detected over a million events where seemingly unrelated accounts tweeted nearly identical content at nearly the same time. We filtered these concurrent content injection events and detected a set of 1,850 accounts that repeatedly exhibit this pattern of behavior, suggesting that they are fully or in part controlled and orchestrated by the same software. We found botnets that appear for brief intervals and disappear, as well as botnets that evolve and grow, spanning the duration of our dataset. We analyze statistical differences between bot accounts and human users, as well as botnet interaction with user communities and Twitter trending topics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源